"수식 표현 안내"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→메타데이터) |
|||
(사용자 2명의 중간 판 60개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==LaTeX 명령어 입문== | |
− | + | * 특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것 | |
− | * 특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것 | ||
** Wiki의 관련항목에 가서 edit 를 눌러보면, TeX 명령들을 카피해서 사용가능. 예)[http://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Mascheroni_constant&action=edit§ion=5 오일러상수 편집모드] | ** Wiki의 관련항목에 가서 edit 를 눌러보면, TeX 명령들을 카피해서 사용가능. 예)[http://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Mascheroni_constant&action=edit§ion=5 오일러상수 편집모드] | ||
− | * LaTeX 관련 페이지 | + | * LaTeX 관련 페이지 |
+ | ** http://www.artofproblemsolving.com/Wiki/index.php/LaTeX:Symbols | ||
** [http://www.stdout.org/%7Ewinston/latex/ Latex cheat sheet 페이지도 한번 읽어볼 것] | ** [http://www.stdout.org/%7Ewinston/latex/ Latex cheat sheet 페이지도 한번 읽어볼 것] | ||
+ | * http://en.wikibooks.org/wiki/LaTeX | ||
− | + | ===모르는 명령어 그림으로 알아내기=== | |
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
− | ==== | + | ==LaTeX으로 노트하기== |
+ | * [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing] | ||
+ | * 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf | ||
− | + | ||
− | + | ==LaTeX 명령예== | |
− | + | ===cases=== | |
− | + | :<math> | |
− | + | f(n) = | |
− | + | \begin{cases} | |
+ | n/2, & \text{if </math>n<math> is even}\\ | ||
+ | 3n+1, & \text{if </math>n<math> is odd} \\ | ||
+ | \end{cases} | ||
+ | </math> | ||
− | + | :<math> | |
+ | f(x)= | ||
+ | \begin{cases} | ||
+ | 0&x\in[-\pi,\pi]\\ | ||
+ | 1&x\notin[-\pi,\pi] | ||
+ | \end{cases} | ||
+ | </math> | ||
− | + | ====atop==== | |
+ | :<math>\tilde y=\left\{ {\ddot x\text{ if </math>\vec x<math> odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math> | ||
− | <math>\ | + | ===array=== |
+ | :<math> | ||
+ | \left\{ | ||
+ | \begin{array}{c} | ||
+ | a_1x+b_1y+c_1z=d_1 \\ | ||
+ | a_2x+b_2y+c_2z=d_2 \\ | ||
+ | a_3x+b_3y+c_3z=d_3 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </math> | ||
+ | :<math> | ||
+ | \begin{array}{c|lcr} | ||
+ | n & \text{Left} & \text{Center} & \text{Right} \\ | ||
+ | \hline 1 & 0.24 & 1 & 125 \\ | ||
+ | 2 & -1 & 189 & -8 \\ | ||
+ | 3 & -20 & 2000 & 1+10i \\ | ||
+ | \end{array} | ||
+ | </math> | ||
− | <math> | + | :<math> |
+ | A=\left( | ||
+ | \begin{array}{c.cccc}&1&2&\cdots&n\\ | ||
+ | 1&a_{11}&a_{12}&\cdots&a_{1n}\\ | ||
+ | 2&a_{21}&a_{22}&\cdots&a_{2n}\\ | ||
+ | \vdots&\vdots&\vdots&\ddots&\vdots\\ | ||
+ | n&a_{n1}&a_{n2}&\cdots&a_{nn} | ||
+ | \end{array} | ||
+ | \right) | ||
+ | </math> | ||
− | + | ===eqnarray=== | |
+ | :<math>\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}</math> | ||
− | |||
− | |||
− | <math>\ | + | ===align=== |
+ | :<math> | ||
+ | \begin{align} | ||
+ | & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ | ||
+ | & = | ||
+ | \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} | ||
+ | \begin{pmatrix} | ||
+ | l_1 & l_2 & l_3 \\[8pt] | ||
+ | 0 & 0 & 0 | ||
+ | \end{pmatrix} | ||
+ | \begin{pmatrix} | ||
+ | l_1 & l_2 & l_3\\ | ||
+ | m_1 & m_2 & m_3 | ||
+ | \end{pmatrix} | ||
+ | \end{align} | ||
+ | </math> | ||
− | + | :<math> | |
+ | \begin{align} | ||
+ | \omega_{n} & =\int\cdots\int_{x_1^2+\cdots+x_n^2\leq\ 1} dx_{1}\cdots dx_{n} \\ | ||
+ | & = \int_{-1}^{1}\left(\int\cdots \int_{x_1^2+\cdots +x_{n-1}^2\leq\ 1-x_{n}^2} dx_{1}\cdots dx_{n-1}\right)dx_{n} | ||
+ | \end{align} | ||
+ | </math> | ||
− | * | + | * http://tex.stackexchange.com/questions/196/eqnarray-vs-align |
− | |||
− | + | ===overbrace/underbrace=== | |
+ | :<math> | ||
+ | \overbrace{ 1+2+\cdots+100 }^{5050} | ||
+ | </math> | ||
− | + | :<math>\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}</math> | |
+ | [[파울리 방정식]] | ||
− | + | ===substack=== | |
+ | :<math> | ||
+ | \sum_{ | ||
+ | \substack{ | ||
+ | r,s,t\geq 0 \\ | ||
+ | r+s=m,s+t=n}} | ||
+ | \frac{q^{rt}}{(q)_r(q)_s(q)_t}=\frac{1}{(q)_{m}(q)_{n}} | ||
+ | </math> | ||
− | |||
− | + | ===크기=== | |
+ | ;large | ||
+ | :<math> | ||
+ | \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | </math> | ||
+ | ;Large | ||
+ | :<math> | ||
+ | \Large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | </math> | ||
+ | ;LARGE | ||
+ | :<math> | ||
+ | \LARGE f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | </math> | ||
− | |||
− | + | ===그리스 문자=== | |
+ | :<math>\alpha \beta \gamma \delta \epsilon (\varepsilon) \zeta \eta \theta | ||
+ | (\vartheta) \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon | ||
+ | \phi (\varphi) \chi \psi \omega</math> | ||
− | + | :<math>A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi P \Sigma T \Upsilon | |
+ | \Phi X \Psi \Omega</math> | ||
− | |||
− | + | ===글꼴=== | |
+ | :<math> | ||
+ | \begin{array}{l|l} | ||
+ | \text{mathcal }&\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathcal }&\mathcal{abcdefghijklmnopqrstuvwxyz}\\ | ||
+ | \text{mathscr }&\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathscr }&\mathscr{abcdefghijklmnopqrstuvwxyz}\\ | ||
+ | \text{mathsf }&\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathsf }&\mathsf{abcdefghijklmnopqrstuvwxyz}\\ | ||
+ | \text{mathbb }&\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathbb }&\mathbb{abcdefghijklmnopqrstuvwxyz}\\ | ||
+ | \text{mathbf }&\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathbf }&\mathbf{abcdefghijklmnopqrstuvwxyz}\\ | ||
+ | \text{mathfrak }&\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ | ||
+ | \text{mathfrak }&\mathfrak{abcdefghijklmnopqrstuvwxyz} | ||
+ | \end{array} | ||
+ | </math> | ||
− | + | ===기타=== | |
− | + | * http://kogler.wordpress.com/2008/03/21/latex-use-of-math-symbols-formulas-and-equations/ | |
− | + | :<math> | |
− | + | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C | |
− | + | </math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | :<math> | ||
+ | \overset{\alpha}{\omega} \underset{\mu}{\nu} \overset{\beta}{\underset{\Delta}{\tau}} \stackrel{\zeta}{\eta} | ||
+ | </math> | ||
+ | * http://math.stackexchange.com/questions/1032483/how-to-evaluate-int-01-arctan-x2-ln-frac1x22x2-dx/1036425#1036425 | ||
+ | :<math> | ||
+ | \begin{align} | ||
+ | \mathscr{I}_2 | ||
+ | =&\color{red}{\cancelto{0}{\color{grey}{x\arctan^2{x}\ln{x}\Bigg{|}^1_0}}}-\int^1_0\arctan^2{x}\ {\rm d}x-\int^1_0\frac{2x\arctan{x}\ln{x}}{1+x^2}{\rm d}x\\ | ||
+ | =&-\frac{\pi^2}{16}-\frac{\pi}{4}\ln{2}+\mathbf{G}+2\sum^\infty_{n=0}\frac{(-1)^nH_{2n+1}}{(2n+3)^2}-\sum^\infty_{n=0}\frac{(-1)^nH_{n}}{(2n+3)^2}\\ | ||
+ | =&\frac{\pi^3}{16}-\frac{\pi^2}{16}-\frac{\pi}{4}\ln{2}+\mathbf{G}-2\sum^\infty_{n=0}\frac{(-1)^nH_{2n+1}}{(2n+1)^2}+\sum^\infty_{n=1}\frac{(-1)^{n}H_n}{(2n+1)^2} | ||
+ | \end{align} | ||
+ | </math> | ||
+ | * <math>\chi(t)=\left(\frac{t}{p}\right)</math> | ||
+ | * <math>\operatorname{Re} a > 0 </math> | ||
+ | * <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> | ||
+ | * <math>720\div12=60</math> | ||
+ | * <math>\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}</math> | ||
+ | * <math>\mathcal{H}om</math> | ||
+ | * <math>G\"odel</math> http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html | ||
* <math>\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}</math> | * <math>\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}</math> | ||
− | + | # \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array} | |
− | # \Large\begin{array}{rccclBCB} | ||
− | |||
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math> | * <math>\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math> | ||
+ | # \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}} | ||
− | + | ==메모== | |
− | + | * http://hyperpolyglot.org/math-notation | |
− | * | + | ====HTML 수식표현==== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | + | * http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols |
+ | * [[HTML과 유니코드에서의 수식표현]] | ||
+ | * [[MathJax]] | ||
− | + | ====웹상에서의 LaTeX을 통한 수식표현==== | |
+ | * 구글 문서에서도 수식표현이 가능 | ||
+ | ** [http://googlesystem.blogspot.com/2009/09/google-docs-has-equation-editor.html Google Docs Has an Equation Editor] | ||
+ | *** Google Operating System, 2009-9-17 | ||
+ | * SITMO | ||
+ | ** http://www.sitmo.com/latex/ | ||
+ | ** 구글이나 스프링노트와는 달리 계정없이 수식이미지를 얻을 수 있음 | ||
+ | * 위키피디아 | ||
+ | ** Wiki의 관련항목에 가서 edit 를 누른뒤, <math></math> 태그 사이에 LaTeX 명령을 써서, preview로 이미지를 얻기 | ||
+ | * MimeTeX | ||
+ | ** http://www.forkosh.com/mimetex.html | ||
+ | * MathJax | ||
+ | ** http://www.mathjax.org/ | ||
+ | ** http://geometry.tistory.com/58 | ||
+ | * 테이블 생성기 http://www.tablesgenerator.com/ | ||
− | |||
− | + | == 관련된 항목들 == | |
+ | * [[그리스문자 및 특수문자모음]] | ||
+ | * [[위에 첨자있는 특수문자]] | ||
+ | * [[집합, 관계, 연산기호]] | ||
+ | * [[행렬과 연립방정식의 수식표현]] | ||
+ | * [[화살표 모음]] | ||
− | + | [[분류:수식표현]] | |
− |
2021년 2월 17일 (수) 04:51 기준 최신판
LaTeX 명령어 입문
- 특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것
- Wiki의 관련항목에 가서 edit 를 눌러보면, TeX 명령들을 카피해서 사용가능. 예)오일러상수 편집모드
- LaTeX 관련 페이지
- http://en.wikibooks.org/wiki/LaTeX
모르는 명령어 그림으로 알아내기
LaTeX으로 노트하기
LaTeX 명령예
cases
\[ f(n) = \begin{cases} n/2, & \text{if \]n\( is even}\\ 3n+1, & \text{if \)n\( is odd} \\ \end{cases} \)
\[ f(x)= \begin{cases} 0&x\in[-\pi,\pi]\\ 1&x\notin[-\pi,\pi] \end{cases} \]
atop
\[\tilde y=\left\{ {\ddot x\text{ if \]\vec x\( odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
array
\[ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. \] \[ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} \]
\[ A=\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn} \end{array} \right) \]
eqnarray
\[\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}\]
align
\[ \begin{align} & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} \]
\[ \begin{align} \omega_{n} & =\int\cdots\int_{x_1^2+\cdots+x_n^2\leq\ 1} dx_{1}\cdots dx_{n} \\ & = \int_{-1}^{1}\left(\int\cdots \int_{x_1^2+\cdots +x_{n-1}^2\leq\ 1-x_{n}^2} dx_{1}\cdots dx_{n-1}\right)dx_{n} \end{align} \]
overbrace/underbrace
\[ \overbrace{ 1+2+\cdots+100 }^{5050} \]
\[\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}\] 파울리 방정식
substack
\[ \sum_{ \substack{ r,s,t\geq 0 \\ r+s=m,s+t=n}} \frac{q^{rt}}{(q)_r(q)_s(q)_t}=\frac{1}{(q)_{m}(q)_{n}} \]
크기
- large
\[ \large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]
- Large
\[ \Large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]
- LARGE
\[ \LARGE f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]
그리스 문자
\[\alpha \beta \gamma \delta \epsilon (\varepsilon) \zeta \eta \theta (\vartheta) \iota \kappa \lambda \mu \nu \xi o \pi \rho \sigma \tau \upsilon \phi (\varphi) \chi \psi \omega\]
\[A B \Gamma \Delta E Z H \Theta I K \Lambda M N \Xi O \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega\]
글꼴
\[ \begin{array}{l|l} \text{mathcal }&\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathcal }&\mathcal{abcdefghijklmnopqrstuvwxyz}\\ \text{mathscr }&\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathscr }&\mathscr{abcdefghijklmnopqrstuvwxyz}\\ \text{mathsf }&\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathsf }&\mathsf{abcdefghijklmnopqrstuvwxyz}\\ \text{mathbb }&\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathbb }&\mathbb{abcdefghijklmnopqrstuvwxyz}\\ \text{mathbf }&\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathbf }&\mathbf{abcdefghijklmnopqrstuvwxyz}\\ \text{mathfrak }&\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\ \text{mathfrak }&\mathfrak{abcdefghijklmnopqrstuvwxyz} \end{array} \]
기타
\[ A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C \]
\[ \overset{\alpha}{\omega} \underset{\mu}{\nu} \overset{\beta}{\underset{\Delta}{\tau}} \stackrel{\zeta}{\eta} \]
\[ \begin{align} \mathscr{I}_2 =&\color{red}{\cancelto{0}{\color{grey}{x\arctan^2{x}\ln{x}\Bigg{|}^1_0}}}-\int^1_0\arctan^2{x}\ {\rm d}x-\int^1_0\frac{2x\arctan{x}\ln{x}}{1+x^2}{\rm d}x\\ =&-\frac{\pi^2}{16}-\frac{\pi}{4}\ln{2}+\mathbf{G}+2\sum^\infty_{n=0}\frac{(-1)^nH_{2n+1}}{(2n+3)^2}-\sum^\infty_{n=0}\frac{(-1)^nH_{n}}{(2n+3)^2}\\ =&\frac{\pi^3}{16}-\frac{\pi^2}{16}-\frac{\pi}{4}\ln{2}+\mathbf{G}-2\sum^\infty_{n=0}\frac{(-1)^nH_{2n+1}}{(2n+1)^2}+\sum^\infty_{n=1}\frac{(-1)^{n}H_n}{(2n+1)^2} \end{align} \]
- \(\chi(t)=\left(\frac{t}{p}\right)\)
- \(\operatorname{Re} a > 0 \)
- \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
- \(720\div12=60\)
- \(\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}\)
- \(\mathcal{H}om\)
- \(G\"odel\) http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
- \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
- \Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}
- \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
- \Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
메모
HTML 수식표현
웹상에서의 LaTeX을 통한 수식표현
- 구글 문서에서도 수식표현이 가능
- Google Docs Has an Equation Editor
- Google Operating System, 2009-9-17
- Google Docs Has an Equation Editor
- SITMO
- http://www.sitmo.com/latex/
- 구글이나 스프링노트와는 달리 계정없이 수식이미지를 얻을 수 있음
- 위키피디아
- Wiki의 관련항목에 가서 edit 를 누른뒤, \(\) 태그 사이에 LaTeX 명령을 써서, preview로 이미지를 얻기
- MimeTeX
- MathJax
- 테이블 생성기 http://www.tablesgenerator.com/