"유수 정리 (residue theorem)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				Pythagoras0 (토론 | 기여)   (→메타데이터)  | 
				||
| (같은 사용자의 중간 판 14개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | ==  | + | ==개요==  | 
| + | * [[복소함수론]]의 주요 정리 중 하나  | ||
| + | |||
| − | + | ==응용==  | |
| − | + | * [[데데킨트 합]]  | |
| − | + | * [[왓슨 변환(Watson transform)]]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [[데데킨트 합]]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [[왓슨 변환(Watson transform)]]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | :<math>\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}</math>  | |
| + | :<math>\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi  \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}</math>  | ||
| − | + | ||
| − | + | ||
| − | + | ||
| + | ==역사==  | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| − | * [[  | + | * [[수학사 연표]]  | 
| − | |||
| − | + | ||
| − | + | ||
==메모==  | ==메모==  | ||
| 57번째 줄: | 28번째 줄: | ||
* http://www.math.binghamton.edu/sabalka/teaching/09Spring375/Chapter10.pdf  | * http://www.math.binghamton.edu/sabalka/teaching/09Spring375/Chapter10.pdf  | ||
| − | + | ||
| − | + | ||
==관련된 항목들==  | ==관련된 항목들==  | ||
| 67번째 줄: | 38번째 줄: | ||
* [[데데킨트 합]]  | * [[데데킨트 합]]  | ||
| − | + | ||
| + | |||
| + | |||
| + | |||
| + | ==수학용어번역==  | ||
| + | * {{수학용어집|url=residue}}  | ||
| + | |||
| − | + | ||
| − | + | ==사전 형태의 자료==  | |
| + | * http://en.wikipedia.org/wiki/residue_theorem  | ||
| − | + | [[분류:복소함수론]]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | == 노트 ==  | |
| − | + | ===말뭉치===  | |
| + | # Applying the Cauchy residue theorem.<ref name="ref_a923acc6">[https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Complex_Variables_with_Applications_(Orloff)/09%3A_Residue_Theorem/9.05%3A_Cauchy_Residue_Theorem 9.5: Cauchy Residue Theorem]</ref>  | ||
| + | # The integral over this curve can then be computed using the residue theorem.<ref name="ref_bc937111">[https://en.wikipedia.org/wiki/Residue_theorem Residue theorem]</ref>  | ||
| + | # The new winding number allows to establish a generalized residue theorem which covers also the situation where singularities lie on the cycle.<ref name="ref_e674624a">[https://www.hindawi.com/journals/jmath/2019/6130464/ Non-Integer Valued Winding Numbers and a Generalized Residue Theorem]</ref>  | ||
| + | # This residue theorem can be used to calculate the value of improper integrals for which the standard technique with the classical residue theorem does not apply.<ref name="ref_e674624a" />  | ||
| + | # In the present article, we introduce a generalized, non-integer winding number for piecewise cycles and a general version of the residue theorem which covers all cases of singularities on .<ref name="ref_e674624a" />  | ||
| + | # Definition 2 of a generalized winding number turns out to be useful as it allows to generalize the residue theorem (see Theorem 8 below).<ref name="ref_e674624a" />  | ||
| + | # The Espil's theorem it's a short proof of the Cauchy's generalized residue theorem.<ref name="ref_7cb1076e">[https://zenodo.org/record/3359674 Espil short proof of generalized Cauchy's residue theorem]</ref>  | ||
| + | # However, I decided to use the nuclear bomb of the integration arsenal, the Cauchy residue theorem of complex analysis.<ref name="ref_f1fcf6e1">[https://ekamperi.github.io/math/2020/12/15/cauchy-residue-theorem.html Computing improper integrals with Cauchy's residue theorem]</ref>  | ||
| + | # In an upcoming topic we will formulate the Cauchy residue theorem.<ref name="ref_844a9d35">[https://www.cite-danper.com/blood-physiology-pqhvw/5c3232-cauchy-residue-theorem cauchy residue theorem]</ref>  | ||
| + | # 1 Residue theorem problems 2 2 Zero Sum theorem for residues problems 76 3 Power series problems 157 Acknowledgement.<ref name="ref_844a9d35" />  | ||
| + | # The following result, Cauchy’s residue theorem, follows from our previous work on integrals.<ref name="ref_844a9d35" />  | ||
| + | # Using residue theorem to compute an integral.<ref name="ref_844a9d35" />  | ||
| + | ===소스===  | ||
| + |  <references />  | ||
| − | ==  | + | == 메타데이터 ==  | 
| − | + | ===위키데이터===  | |
| − | *   | + | * ID :  [https://www.wikidata.org/wiki/Q830513 Q830513]  | 
| − | + | ===Spacy 패턴 목록===  | |
| − | + | * [{'LOWER': 'residue'}, {'LEMMA': 'theorem'}]  | |
| − | * [  | + | * [{'LOWER': 'cauchy'}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]  | 
| − | * [  | + | * [{'LOWER': 'cauchy'}, {'LOWER': "'s"}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]  | 
| − | *  | ||
2021년 2월 21일 (일) 19:43 기준 최신판
개요
- 복소함수론의 주요 정리 중 하나
 
응용
\[\sum_{k=1}^{\infty}\frac{1}{k^{4}-a^4}=\frac{1}{2a^4}-\frac{\pi \cot (\pi a)}{4 a^3}-\frac{\pi \coth (\pi a)}{4 a^3}\] \[\sum_{n=-\infty}^{\infty}\frac{1}{n^2+n+1}=\frac{2\pi \tanh \left(\frac{\sqrt{3} \pi }{2}\right)}{\sqrt{3}}\]
 
 
 
역사
 
 
메모
 
 
관련된 항목들
 
 
수학용어번역
- residue - 대한수학회 수학용어집
 
사전 형태의 자료
노트
말뭉치
- Applying the Cauchy residue theorem.[1]
 - The integral over this curve can then be computed using the residue theorem.[2]
 - The new winding number allows to establish a generalized residue theorem which covers also the situation where singularities lie on the cycle.[3]
 - This residue theorem can be used to calculate the value of improper integrals for which the standard technique with the classical residue theorem does not apply.[3]
 - In the present article, we introduce a generalized, non-integer winding number for piecewise cycles and a general version of the residue theorem which covers all cases of singularities on .[3]
 - Definition 2 of a generalized winding number turns out to be useful as it allows to generalize the residue theorem (see Theorem 8 below).[3]
 - The Espil's theorem it's a short proof of the Cauchy's generalized residue theorem.[4]
 - However, I decided to use the nuclear bomb of the integration arsenal, the Cauchy residue theorem of complex analysis.[5]
 - In an upcoming topic we will formulate the Cauchy residue theorem.[6]
 - 1 Residue theorem problems 2 2 Zero Sum theorem for residues problems 76 3 Power series problems 157 Acknowledgement.[6]
 - The following result, Cauchy’s residue theorem, follows from our previous work on integrals.[6]
 - Using residue theorem to compute an integral.[6]
 
소스
메타데이터
위키데이터
- ID : Q830513
 
Spacy 패턴 목록
- [{'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
 - [{'LOWER': 'cauchy'}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]
 - [{'LOWER': 'cauchy'}, {'LOWER': "'s"}, {'LOWER': 'residue'}, {'LEMMA': 'theorem'}]