"이차 수체의 데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
* 이차수체 <math>K</math>에 대하여, [[데데킨트 제타함수]] <math>\zeta_{K}(s)</math>는 다음과 같이 분해된다
 +
:<math>
 +
\zeta_{K}(s)=\zeta(s)L_{d_K}(s)
 +
</math>
 +
여기서 <math>\zeta(s)</math> 는 [[리만제타함수]]이고 <math>L_{d_K}(s)</math>는 다음과 같이 정의된 [[디리클레 L-함수]]
 +
:<math>L_{d_K}(s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}}=\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}</math>
 +
여기서 <math>\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}</math> 은 홀수인 소수 <math>p\in \mathbb{Z}</math>에 대하여 다음을 만족하는 준동형사상
 +
:<math>\chi(p)=\left(\frac{d_K}{p}\right)</math>
  
 
 
  
<h5>개요</h5>
+
==제타함수의 분해==
 +
;정리
 +
:<math>\zeta_{K}(s)=\zeta(s)L_{d_K}(s)</math>
 +
;증명
 +
제타함수의 오일러곱
 +
:<math>\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}</math> 을 이용하자.
 +
각 소수 <math>p\in \mathbb{Z}</math> 에 대하여, 다음과 같은 아이디얼 <math>(p)\subseteq \mathcal{O}_K</math>의 분해를 얻는다.
 +
* <math>\left(\frac{d_K}{p}\right)=1</math> 이면,  <math>(p)=\mathfrak{p}_1\mathfrak{p}_2</math> , <math>\mathfrak{p}_1\neq \mathfrak{p}_2</math> 이고 <math>N(\mathfrak{p}_1)=N(\mathfrak{p}_2)=p</math>
 +
* <math>\left(\frac{d_K}{p}\right)=-1</math> 이면,  <math>(p)=\mathfrak{p}</math> 이고 <math>N(\mathfrak{p})=p^2</math>
 +
* <math>\left(\frac{d_K}{p}\right)=0</math> 이면,  <math>(p)=\mathfrak{p}^2</math> 이고 <math>N(\mathfrak{p})=p</math>
  
* 이차수체 <math>K</math>에 대하여, [[데데킨트 제타함수]]는 다음과 같이 정의됨
+
따라서
  
<math>\zeta_{K}(s)=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}=\prod_{\wp \text{:prime ideals}} \frac{1}{1-N(\wp)^{-s}}=\zeta(s)L_{d_K}(s)</math>
+
:<math>\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}=\prod_{p \text{:primes}} \left(1-\frac{1}{p^{s}}\right)^{-1}\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}.</math>
  
 
+
이로부터 <math>\zeta_{K}(s)=\zeta(s)L_{d_K}(s)</math> 를 얻는다. ■
  
 
 
  
<h5>제타함수의 분해</h5>
+
*  일반적으로 <math>{d_K}=d_1d_2</math>에 대응되는 genus character <math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>) 를 정의할 수 있고, 두 디리클레 L-함수의 곱으로 표현가능함 (아래 정리 참조)
 +
*  위의 경우는 <math>{d_K}=1\cdot d_K</math> 에 해당
 +
;정리
  
 
+
<math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>)에 대하여
 
 
* 위에서 사용된 기호들에 대한 설명
 
 
 
<math>\zeta(s)</math> 는 [[리만제타함수|리만제타함수와 리만가설]]
 
 
 
<math>L_{d_K}(s)</math>는 디리클레 L 함수([[디리클레 L-함수]] 항목 참조)
 
 
 
<math>\chi</math>는 <math>d_K</math>를 나누지 않는 소수 <math>p</math>에 대하여 <math>\chi(p)=\left(\frac{d_K}{p}\right)</math> 를 만족시키는 준동형사상 <math>\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}</math>
 
 
 
*  일반적으로 <math>{d_K}=d_1d_2</math>에 대응되는 genus character <math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>) 를 정의할 수 있고, 두 디리클레 L-함수의 곱으로 표현가능함 (아래 정리 참조)<br>
 
* 위의 경우는 <math>{d_K}=1\cdot d_K</math> 에 해당<br>
 
 
 
 
 
 
 
(정리)
 
 
 
<math>\chi \colon I_K \to \mathbb C^{*}</math>  (<math>\chi \colon C_K \to \mathbb C^{*}</math>)에 대하여
 
  
 
<math>L(\chi,s) =L_{d_1}(s)L_{d_2}(s)</math>
 
<math>L(\chi,s) =L_{d_1}(s)L_{d_2}(s)</math>
 +
:<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}</math>
  
(증명)
+
   
 
 
<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}</math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]
 
 
 
 
 
 
 
 
 
 
 
<h5>역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련된 항목들</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
 
 
*  
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
 
 
 
<h5>리뷰논문, 에세이, 강의노트</h5>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
+
==관련된 항목들==
 +
* [[이차 수체에 대한 디리클레 유수 (class number) 공식]]
 +
* [[복소 이차 수체의 데데킨트 제타함수 special values]]
  
 
 
  
<h5>관련도서</h5>
 
  
* 도서내검색<br>
+
   
** http://books.google.com/books?q=
+
[[분류:정수론]]
** http://book.daum.net/search/contentSearch.do?query=
 

2020년 12월 28일 (월) 02:51 기준 최신판

개요

\[ \zeta_{K}(s)=\zeta(s)L_{d_K}(s) \] 여기서 \(\zeta(s)\) 는 리만제타함수이고 \(L_{d_K}(s)\)는 다음과 같이 정의된 디리클레 L-함수 \[L_{d_K}(s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}}=\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}\] 여기서 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}\) 은 홀수인 소수 \(p\in \mathbb{Z}\)에 대하여 다음을 만족하는 준동형사상 \[\chi(p)=\left(\frac{d_K}{p}\right)\]


제타함수의 분해

정리

\[\zeta_{K}(s)=\zeta(s)L_{d_K}(s)\]

증명

제타함수의 오일러곱 \[\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}\] 을 이용하자. 각 소수 \(p\in \mathbb{Z}\) 에 대하여, 다음과 같은 아이디얼 \((p)\subseteq \mathcal{O}_K\)의 분해를 얻는다.

  • \(\left(\frac{d_K}{p}\right)=1\) 이면, \((p)=\mathfrak{p}_1\mathfrak{p}_2\) , \(\mathfrak{p}_1\neq \mathfrak{p}_2\) 이고 \(N(\mathfrak{p}_1)=N(\mathfrak{p}_2)=p\)
  • \(\left(\frac{d_K}{p}\right)=-1\) 이면, \((p)=\mathfrak{p}\) 이고 \(N(\mathfrak{p})=p^2\)
  • \(\left(\frac{d_K}{p}\right)=0\) 이면, \((p)=\mathfrak{p}^2\) 이고 \(N(\mathfrak{p})=p\)

따라서

\[\zeta_{K}(s)=\prod_{\mathfrak{p} \text{:prime ideals}} \left(1-N(\mathfrak{p})^{-s}\right)^{-1}=\prod_{p \text{:primes}} \left(1-\frac{1}{p^{s}}\right)^{-1}\prod_{p \text{:primes}} \left(1-\frac{(\frac{d_K}{p})}{p^{s}}\right)^{-1}.\]

이로부터 \(\zeta_{K}(s)=\zeta(s)L_{d_K}(s)\) 를 얻는다. ■


  • 일반적으로 \({d_K}=d_1d_2\)에 대응되는 genus character \(\chi \colon I_K \to \mathbb C^{*}\) (\(\chi \colon C_K \to \mathbb C^{*}\)) 를 정의할 수 있고, 두 디리클레 L-함수의 곱으로 표현가능함 (아래 정리 참조)
  • 위의 경우는 \({d_K}=1\cdot d_K\) 에 해당
정리

\(\chi \colon I_K \to \mathbb C^{*}\) (\(\chi \colon C_K \to \mathbb C^{*}\))에 대하여

\(L(\chi,s) =L_{d_1}(s)L_{d_2}(s)\) \[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-\chi(\mathfrak{p})N(\mathfrak{p})^{-s}}\]



관련된 항목들