"자연수의 분할(partition)과 rank/crank 목록"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 33개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
* 분할의 rank = 분할에서 가장 큰 수 - 분할의 크기
 +
*  예
 +
** 9의 분할인 {7,1,1}의 경우, rank=7-3=4
 +
** 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
 +
*  분할의 crank
 +
** 분할에서 가장 큰 수 (1이 포함되지 않는 분할의 경우)
 +
** 분할에서 "1의개수"보다 큰 수 - 1의 개수 (1이 포함되는 경우)
 +
*  예
 +
** 9의 분할인 {7,1,1}의 경우, crank=1-2=-1
 +
** 9의 분할인 {4,3,1,1}의 경우, crank=2-2=0
 +
* [[200까지의 분할수 목록]] 항목 참조
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
  
 
+
==목록==
  
 
+
* 분할수와 분할의 목록
 +
* 경우에 따라 분할에 따른 rank
  
<h5>목록</h5>
+
  
 
+
  
{{1}}
+
==1의 분할==
  
 
+
* 분할수 = 1
 +
* <nowiki>{{1}}</nowiki>
  
{{2},{1,1}}
+
  
 
+
==2의 분할==
  
{{3},{2,1},{1,1,1}}
+
* 분할수 = 2
 +
* {{2},{1,1}}
  
 
+
  
{{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}
+
==3의 분할==
  
 
+
* 분할수 = 3
 +
* {{3},{2,1},{1,1,1}}
  
{{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}
+
  
 
+
  
{{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
+
==4의 분할==
  
 
+
* 분할수 = 5
 +
* {{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}
  
{{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
+
  
 
+
  
{{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}
+
==5의 분할==
  
 
+
* 분할수 = 7
 +
* {{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}
  
<h5>9의 분할</h5>
+
  
{{9},{8,1},{7,2},{7,1,1},{6,3},{6,2,1},{6,1,1,1},{5,4},{5,3,1},{5,2,2},{5,2,1,1},{5,1,1,1,1},{4,4,1},{4,3,2},{4,3,1,1},{4,2,2,1},{4,2,1,1,1},{4,1,1,1,1,1},{3,3,3},{3,3,2,1},{3,3,1,1,1},{3,2,2,2},{3,2,2,1,1},{3,2,1,1,1,1},{3,1,1,1,1,1,1},{2,2,2,2,1},{2,2,2,1,1,1},{2,2,1,1,1,1,1},{2,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1}}
+
  
 
+
==6의 분할==
  
 
+
* 분할수 = 11
 +
* {{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
 +
*  분할의 rank  {5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5}≡ {5, 3, 2, 1, 1, 0, 10, 10, 9, 8, 6} (mod 11) rank의 나머지에 7이 없고, 10이 두개
 +
*  분할의 crank {6, 0, 4, -1, 3, 1, -3, 2, -2, -4, -6} ≡ {6, 0, 4, 10, 3, 1, 8, 2, 9, 7, 5} (mod 11) crank의 나머지는 고르게 분포되어 있음
 +
* 분할과 rank, rank (mod 11), crank (mod 11)
  
<h5>10의 분할</h5>
+
{6}, rank=5≡5(mod 11), crank=6≡6(mod 11) {5,1}, rank=3≡3(mod 11), crank=0≡0(mod 11) {4,2}, rank=2≡2(mod 11), crank=4≡4(mod 11) {4,1,1}, rank=1≡1(mod 11), crank=-1≡10(mod 11) {3,3}, rank=1≡1(mod 11), crank=3≡3(mod 11) {3,2,1}, rank=0≡0(mod 11), crank=1≡1(mod 11) {3,1,1,1}, rank=-1≡10(mod 11), crank=-3≡8(mod 11) {2,2,2}, rank=-1≡10(mod 11), crank=2≡2(mod 11) {2,2,1,1}, rank=-2≡9(mod 11), crank=-2≡9(mod 11) {2,1,1,1,1}, rank=-3≡8(mod 11), crank=-4≡7(mod 11) {1,1,1,1,1,1}, rank=-5≡6(mod 11), crank=-6≡5(mod 11) {4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5) {4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5) {4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5) {4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5) {3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5) {3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5) {3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5) {3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5) {3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5) {3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5) {3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5) {2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5) {2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5) {2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5) {2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5) {1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5) 
  
{{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
+
  
 
+
  
{{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}
+
==7의 분할==
  
 
+
* 분할수 = 15
 +
* {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
  
{{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
+
  
 
+
  
<h5>재미있는 사실</h5>
+
==8의 분할==
  
 
+
* 분할수 = 22
 +
* {{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}
  
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
  
 
+
==9의 분할==
  
 
+
* 분할수 = 30
 +
* {{9}, {8, 1}, {7, 2}, {7, 1, 1}, {6, 3}, {6, 2, 1}, {6, 1, 1, 1}, {5,  4}, {5, 3, 1}, {5, 2, 2}, {5, 2, 1, 1}, {5, 1, 1, 1, 1}, {4, 4, 1}, {4, 3, 2}, {4, 3, 1, 1}, {4, 2, 2, 1}, {4, 2, 1, 1, 1}, {4, 1, 1, 1, 1, 1}, {3, 3, 3}, {3, 3, 2, 1}, {3, 3, 1, 1, 1}, {3, 2, 2, 2}, {3, 2, 2, 1, 1}, {3, 2, 1, 1, 1, 1}, {3, 1, 1, 1, 1, 1, 1}, {2, 2, 2, 2, 1}, {2, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {2, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1}}
 +
*  분할의 rank  {8,6,5,4,4,3,2,3,2,2,1,0,1,1,0,0,-1,-2,0,-1,-2,-1,-2,-3,-4,-3,-4,-5,-6,-8}
 +
*  분할의 crank {9,0,7,-1,6,1,-2,5,1,5,-1,-3,1,4,0,2,-2,-5,3,2,-3,3,-1,-4,-6,3,-3,-5,-7,-9}
 +
* 분할과 rank, rank (mod 5), crank (mod 5)
  
<h5>역사</h5>
+
{9}, rank=8≡3(mod 5), crank=9≡4(mod 5) {8,1}, rank=6≡1(mod 5), crank=0≡0(mod 5) {7,2}, rank=5≡0(mod 5), crank=7≡2(mod 5) {7,1,1}, rank=4≡4(mod 5), crank=-1≡4(mod 5) {6,3}, rank=4≡4(mod 5), crank=6≡1(mod 5) {6,2,1}, rank=3≡3(mod 5), crank=1≡1(mod 5) {6,1,1,1}, rank=2≡2(mod 5), crank=-2≡3(mod 5) {5,4}, rank=3≡3(mod 5), crank=5≡0(mod 5) {5,3,1}, rank=2≡2(mod 5), crank=1≡1(mod 5) {5,2,2}, rank=2≡2(mod 5), crank=5≡0(mod 5) {5,2,1,1}, rank=1≡1(mod 5), crank=-1≡4(mod 5) {5,1,1,1,1}, rank=0≡0(mod 5), crank=-3≡2(mod 5) {4,4,1}, rank=1≡1(mod 5), crank=1≡1(mod 5) {4,3,2}, rank=1≡1(mod 5), crank=4≡4(mod 5) {4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5) {4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5) {4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5) {4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5) {3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5) {3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5) {3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5) {3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5) {3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5) {3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5) {3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5) {2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5) {2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5) {2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5) {2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5) {1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5)
  
* [[수학사연표 (역사)|수학사연표]]
+
  
 
+
  
 
+
==10의 분할==
  
<h5>메모</h5>
+
* 분할수 = 42
 +
* {{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
  
Ramanujan's congruences and Dyson's crank<br> George E. Andrews*† and Ken Ono‡
+
  
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266147/
+
  
 
+
==11의 분할==
  
<h5>관련된 항목들</h5>
+
* 분할수 = 56
 +
* {{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==12의 분할==
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* 분할수 = 77
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* {{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
*  분할의 rank {11,9,8,7,7,6,5,6,5,5,4,3,5,4,4,3,3,2,1,4,3,3,2,3,2,1,2,1,0,-1,2,1,2,1,0,1,1,0,-1,0,-1,-2,-3,1,0,0,-1,-2,0,-1,-1,-2,-3,-1,-2,-3,-4,-5,-1,-2,-3,-2,-3,-4,-5,-3,-4,-5,-6,-7,-4,-5,-6,-7,-8,-9,-11}
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* 분할과 rank, rank (mod 7) {12}, rank=11≡4 (mod 7) {11,1}, rank=9≡2 (mod 7) {10,2}, rank=8≡1 (mod 7) {10,1,1}, rank=7≡0 (mod 7) {9,3}, rank=7≡0 (mod 7) {9,2,1}, rank=6≡6 (mod 7) {9,1,1,1}, rank=5≡5 (mod 7) {8,4}, rank=6≡6 (mod 7) {8,3,1}, rank=5≡5 (mod 7) {8,2,2}, rank=5≡5 (mod 7) {8,2,1,1}, rank=4≡4 (mod 7) {8,1,1,1,1}, rank=3≡3 (mod 7) {7,5}, rank=5≡5 (mod 7) {7,4,1}, rank=4≡4 (mod 7) {7,3,2}, rank=4≡4 (mod 7) {7,3,1,1}, rank=3≡3 (mod 7) {7,2,2,1}, rank=3≡3 (mod 7) {7,2,1,1,1}, rank=2≡2 (mod 7) {7,1,1,1,1,1}, rank=1≡1 (mod 7) {6,6}, rank=4≡4 (mod 7) {6,5,1}, rank=3≡3 (mod 7) {6,4,2}, rank=3≡3 (mod 7) {6,4,1,1}, rank=2≡2 (mod 7) {6,3,3}, rank=3≡3 (mod 7) {6,3,2,1}, rank=2≡2 (mod 7) {6,3,1,1,1}, rank=1≡1 (mod 7) {6,2,2,2}, rank=2≡2 (mod 7) {6,2,2,1,1}, rank=1≡1 (mod 7) {6,2,1,1,1,1}, rank=0≡0 (mod 7) {6,1,1,1,1,1,1}, rank=-1≡6 (mod 7) {5,5,2}, rank=2≡2 (mod 7) {5,5,1,1}, rank=1≡1 (mod 7) {5,4,3}, rank=2≡2 (mod 7) {5,4,2,1}, rank=1≡1 (mod 7) {5,4,1,1,1}, rank=0≡0 (mod 7) {5,3,3,1}, rank=1≡1 (mod 7) {5,3,2,2}, rank=1≡1 (mod 7) {5,3,2,1,1}, rank=0≡0 (mod 7) {5,3,1,1,1,1}, rank=-1≡6 (mod 7) {5,2,2,2,1}, rank=0≡0 (mod 7) {5,2,2,1,1,1}, rank=-1≡6 (mod 7) {5,2,1,1,1,1,1}, rank=-2≡5 (mod 7) {5,1,1,1,1,1,1,1}, rank=-3≡4 (mod 7) {4,4,4}, rank=1≡1 (mod 7) {4,4,3,1}, rank=0≡0 (mod 7) {4,4,2,2}, rank=0≡0 (mod 7) {4,4,2,1,1}, rank=-1≡6 (mod 7) {4,4,1,1,1,1}, rank=-2≡5 (mod 7) {4,3,3,2}, rank=0≡0 (mod 7) {4,3,3,1,1}, rank=-1≡6 (mod 7) {4,3,2,2,1}, rank=-1≡6 (mod 7) {4,3,2,1,1,1}, rank=-2≡5 (mod 7) {4,3,1,1,1,1,1}, rank=-3≡4 (mod 7) {4,2,2,2,2}, rank=-1≡6 (mod 7) {4,2,2,2,1,1}, rank=-2≡5 (mod 7) {4,2,2,1,1,1,1}, rank=-3≡4 (mod 7) {4,2,1,1,1,1,1,1}, rank=-4≡3 (mod 7) {4,1,1,1,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,3,3,3}, rank=-1≡6 (mod 7) {3,3,3,2,1}, rank=-2≡5 (mod 7) {3,3,3,1,1,1}, rank=-3≡4 (mod 7) {3,3,2,2,2}, rank=-2≡5 (mod 7) {3,3,2,2,1,1}, rank=-3≡4 (mod 7) {3,3,2,1,1,1,1}, rank=-4≡3 (mod 7) {3,3,1,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,2,2,2,2,1}, rank=-3≡4 (mod 7) {3,2,2,2,1,1,1}, rank=-4≡3 (mod 7) {3,2,2,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,2,1,1,1,1,1,1,1}, rank=-6≡1 (mod 7) {3,1,1,1,1,1,1,1,1,1}, rank=-7≡0 (mod 7) {2,2,2,2,2,2}, rank=-4≡3 (mod 7) {2,2,2,2,2,1,1}, rank=-5≡2 (mod 7) {2,2,2,2,1,1,1,1}, rank=-6≡1 (mod 7) {2,2,2,1,1,1,1,1,1}, rank=-7≡0 (mod 7) {2,2,1,1,1,1,1,1,1,1}, rank=-8≡6 (mod 7) {2,1,1,1,1,1,1,1,1,1,1}, rank=-9≡5 (mod 7) {1,1,1,1,1,1,1,1,1,1,1,1}, rank=-11≡3 (mod 7)
 +
 
 +
 +
 
 +
 
 +
 
 +
==재미있는 사실==
 +
* In 1944, the crank was first hinted at by Freeman Dyson (2), then an undergraduate at Cambridge University. He had written an article, titled Some Guesses in the Theory of Partitions, for Eureka, the undergraduate mathematics journal of Cambridge.
 +
 
 +
 
 +
* [[수학사 연표]]
 +
 
 +
 +
 
 +
  
 
+
==메모==
  
 
 
  
<h5>사전 형태의 자료</h5>
 
  
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
 
  
 
+
  
<h5>관련논문</h5>
+
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
==관련된 항목들==
* http://dx.doi.org/
 
  
 
+
  
<h5>관련도서 및 추천도서</h5>
+
  
*  도서내검색<br>
+
==수학용어번역==
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
* http://www.google.com/dictionary?langpair=en|ko&q=
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
<h5>관련기사</h5>
 
  
* 네이버 뉴스 검색 (키워드 수정)<br>
+
   
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
==관련논문==
 +
* Dousse, Jehanne, and Michael H. Mertens. “Asymptotic Formulae for Partition Ranks.” arXiv:1406.6848 [math], June 26, 2014. http://arxiv.org/abs/1406.6848.
 +
* [http://dx.doi.org/10.1073/pnas.0507844102 Ramanujan's congruences and Dyson's crank]
 +
** George E. Andrews and Ken Ono, PNAS October 25, 2005 vol. 102 no. 43 15277
 +
* [http://projecteuclid.org/euclid.bams/1183554533 Dyson's crank of a partition]
 +
** George E. Andrews and F. G. Garvan, Bull. Amer. Math. Soc. (N.S.) Volume 18, Number 2 (1988), 167-171
  
 
 
  
<h5>블로그</h5>
 
  
*  구글 블로그 검색<br>
+
[[분류:q-급수]]
** http://blogsearch.google.com/blogsearch?q=
+
[[분류:목록]]
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
[[분류:분할수]]
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2020년 12월 28일 (월) 02:53 기준 최신판

개요

  • 분할의 rank = 분할에서 가장 큰 수 - 분할의 크기
    • 9의 분할인 {7,1,1}의 경우, rank=7-3=4
    • 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • 분할의 crank
    • 분할에서 가장 큰 수 (1이 포함되지 않는 분할의 경우)
    • 분할에서 "1의개수"보다 큰 수 - 1의 개수 (1이 포함되는 경우)
    • 9의 분할인 {7,1,1}의 경우, crank=1-2=-1
    • 9의 분할인 {4,3,1,1}의 경우, crank=2-2=0
  • 200까지의 분할수 목록 항목 참조



목록

  • 분할수와 분할의 목록
  • 경우에 따라 분할에 따른 rank



1의 분할

  • 분할수 = 1
  • {{1}}


2의 분할

  • 분할수 = 2
  • {{2},{1,1}}


3의 분할

  • 분할수 = 3
  • {{3},{2,1},{1,1,1}}



4의 분할

  • 분할수 = 5
  • {{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}



5의 분할

  • 분할수 = 7
  • {{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}



6의 분할

  • 분할수 = 11
  • {{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
  • 분할의 rank {5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5}≡ {5, 3, 2, 1, 1, 0, 10, 10, 9, 8, 6} (mod 11) rank의 나머지에 7이 없고, 10이 두개
  • 분할의 crank {6, 0, 4, -1, 3, 1, -3, 2, -2, -4, -6} ≡ {6, 0, 4, 10, 3, 1, 8, 2, 9, 7, 5} (mod 11) crank의 나머지는 고르게 분포되어 있음
  • 분할과 rank, rank (mod 11), crank (mod 11)

{6}, rank=5≡5(mod 11), crank=6≡6(mod 11) {5,1}, rank=3≡3(mod 11), crank=0≡0(mod 11) {4,2}, rank=2≡2(mod 11), crank=4≡4(mod 11) {4,1,1}, rank=1≡1(mod 11), crank=-1≡10(mod 11) {3,3}, rank=1≡1(mod 11), crank=3≡3(mod 11) {3,2,1}, rank=0≡0(mod 11), crank=1≡1(mod 11) {3,1,1,1}, rank=-1≡10(mod 11), crank=-3≡8(mod 11) {2,2,2}, rank=-1≡10(mod 11), crank=2≡2(mod 11) {2,2,1,1}, rank=-2≡9(mod 11), crank=-2≡9(mod 11) {2,1,1,1,1}, rank=-3≡8(mod 11), crank=-4≡7(mod 11) {1,1,1,1,1,1}, rank=-5≡6(mod 11), crank=-6≡5(mod 11) {4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5) {4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5) {4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5) {4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5) {3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5) {3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5) {3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5) {3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5) {3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5) {3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5) {3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5) {2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5) {2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5) {2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5) {2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5) {1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5)



7의 분할

  • 분할수 = 15
  • {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}



8의 분할

  • 분할수 = 22
  • {{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}


9의 분할

  • 분할수 = 30
  • {{9}, {8, 1}, {7, 2}, {7, 1, 1}, {6, 3}, {6, 2, 1}, {6, 1, 1, 1}, {5, 4}, {5, 3, 1}, {5, 2, 2}, {5, 2, 1, 1}, {5, 1, 1, 1, 1}, {4, 4, 1}, {4, 3, 2}, {4, 3, 1, 1}, {4, 2, 2, 1}, {4, 2, 1, 1, 1}, {4, 1, 1, 1, 1, 1}, {3, 3, 3}, {3, 3, 2, 1}, {3, 3, 1, 1, 1}, {3, 2, 2, 2}, {3, 2, 2, 1, 1}, {3, 2, 1, 1, 1, 1}, {3, 1, 1, 1, 1, 1, 1}, {2, 2, 2, 2, 1}, {2, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {2, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1}}
  • 분할의 rank {8,6,5,4,4,3,2,3,2,2,1,0,1,1,0,0,-1,-2,0,-1,-2,-1,-2,-3,-4,-3,-4,-5,-6,-8}
  • 분할의 crank {9,0,7,-1,6,1,-2,5,1,5,-1,-3,1,4,0,2,-2,-5,3,2,-3,3,-1,-4,-6,3,-3,-5,-7,-9}
  • 분할과 rank, rank (mod 5), crank (mod 5)

{9}, rank=8≡3(mod 5), crank=9≡4(mod 5) {8,1}, rank=6≡1(mod 5), crank=0≡0(mod 5) {7,2}, rank=5≡0(mod 5), crank=7≡2(mod 5) {7,1,1}, rank=4≡4(mod 5), crank=-1≡4(mod 5) {6,3}, rank=4≡4(mod 5), crank=6≡1(mod 5) {6,2,1}, rank=3≡3(mod 5), crank=1≡1(mod 5) {6,1,1,1}, rank=2≡2(mod 5), crank=-2≡3(mod 5) {5,4}, rank=3≡3(mod 5), crank=5≡0(mod 5) {5,3,1}, rank=2≡2(mod 5), crank=1≡1(mod 5) {5,2,2}, rank=2≡2(mod 5), crank=5≡0(mod 5) {5,2,1,1}, rank=1≡1(mod 5), crank=-1≡4(mod 5) {5,1,1,1,1}, rank=0≡0(mod 5), crank=-3≡2(mod 5) {4,4,1}, rank=1≡1(mod 5), crank=1≡1(mod 5) {4,3,2}, rank=1≡1(mod 5), crank=4≡4(mod 5) {4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5) {4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5) {4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5) {4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5) {3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5) {3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5) {3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5) {3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5) {3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5) {3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5) {3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5) {2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5) {2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5) {2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5) {2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5) {1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5)



10의 분할

  • 분할수 = 42
  • {{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}



11의 분할

  • 분할수 = 56
  • {{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}



12의 분할

  • 분할수 = 77
  • {{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
  • 분할의 rank {11,9,8,7,7,6,5,6,5,5,4,3,5,4,4,3,3,2,1,4,3,3,2,3,2,1,2,1,0,-1,2,1,2,1,0,1,1,0,-1,0,-1,-2,-3,1,0,0,-1,-2,0,-1,-1,-2,-3,-1,-2,-3,-4,-5,-1,-2,-3,-2,-3,-4,-5,-3,-4,-5,-6,-7,-4,-5,-6,-7,-8,-9,-11}
  • 분할과 rank, rank (mod 7) {12}, rank=11≡4 (mod 7) {11,1}, rank=9≡2 (mod 7) {10,2}, rank=8≡1 (mod 7) {10,1,1}, rank=7≡0 (mod 7) {9,3}, rank=7≡0 (mod 7) {9,2,1}, rank=6≡6 (mod 7) {9,1,1,1}, rank=5≡5 (mod 7) {8,4}, rank=6≡6 (mod 7) {8,3,1}, rank=5≡5 (mod 7) {8,2,2}, rank=5≡5 (mod 7) {8,2,1,1}, rank=4≡4 (mod 7) {8,1,1,1,1}, rank=3≡3 (mod 7) {7,5}, rank=5≡5 (mod 7) {7,4,1}, rank=4≡4 (mod 7) {7,3,2}, rank=4≡4 (mod 7) {7,3,1,1}, rank=3≡3 (mod 7) {7,2,2,1}, rank=3≡3 (mod 7) {7,2,1,1,1}, rank=2≡2 (mod 7) {7,1,1,1,1,1}, rank=1≡1 (mod 7) {6,6}, rank=4≡4 (mod 7) {6,5,1}, rank=3≡3 (mod 7) {6,4,2}, rank=3≡3 (mod 7) {6,4,1,1}, rank=2≡2 (mod 7) {6,3,3}, rank=3≡3 (mod 7) {6,3,2,1}, rank=2≡2 (mod 7) {6,3,1,1,1}, rank=1≡1 (mod 7) {6,2,2,2}, rank=2≡2 (mod 7) {6,2,2,1,1}, rank=1≡1 (mod 7) {6,2,1,1,1,1}, rank=0≡0 (mod 7) {6,1,1,1,1,1,1}, rank=-1≡6 (mod 7) {5,5,2}, rank=2≡2 (mod 7) {5,5,1,1}, rank=1≡1 (mod 7) {5,4,3}, rank=2≡2 (mod 7) {5,4,2,1}, rank=1≡1 (mod 7) {5,4,1,1,1}, rank=0≡0 (mod 7) {5,3,3,1}, rank=1≡1 (mod 7) {5,3,2,2}, rank=1≡1 (mod 7) {5,3,2,1,1}, rank=0≡0 (mod 7) {5,3,1,1,1,1}, rank=-1≡6 (mod 7) {5,2,2,2,1}, rank=0≡0 (mod 7) {5,2,2,1,1,1}, rank=-1≡6 (mod 7) {5,2,1,1,1,1,1}, rank=-2≡5 (mod 7) {5,1,1,1,1,1,1,1}, rank=-3≡4 (mod 7) {4,4,4}, rank=1≡1 (mod 7) {4,4,3,1}, rank=0≡0 (mod 7) {4,4,2,2}, rank=0≡0 (mod 7) {4,4,2,1,1}, rank=-1≡6 (mod 7) {4,4,1,1,1,1}, rank=-2≡5 (mod 7) {4,3,3,2}, rank=0≡0 (mod 7) {4,3,3,1,1}, rank=-1≡6 (mod 7) {4,3,2,2,1}, rank=-1≡6 (mod 7) {4,3,2,1,1,1}, rank=-2≡5 (mod 7) {4,3,1,1,1,1,1}, rank=-3≡4 (mod 7) {4,2,2,2,2}, rank=-1≡6 (mod 7) {4,2,2,2,1,1}, rank=-2≡5 (mod 7) {4,2,2,1,1,1,1}, rank=-3≡4 (mod 7) {4,2,1,1,1,1,1,1}, rank=-4≡3 (mod 7) {4,1,1,1,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,3,3,3}, rank=-1≡6 (mod 7) {3,3,3,2,1}, rank=-2≡5 (mod 7) {3,3,3,1,1,1}, rank=-3≡4 (mod 7) {3,3,2,2,2}, rank=-2≡5 (mod 7) {3,3,2,2,1,1}, rank=-3≡4 (mod 7) {3,3,2,1,1,1,1}, rank=-4≡3 (mod 7) {3,3,1,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,2,2,2,2,1}, rank=-3≡4 (mod 7) {3,2,2,2,1,1,1}, rank=-4≡3 (mod 7) {3,2,2,1,1,1,1,1}, rank=-5≡2 (mod 7) {3,2,1,1,1,1,1,1,1}, rank=-6≡1 (mod 7) {3,1,1,1,1,1,1,1,1,1}, rank=-7≡0 (mod 7) {2,2,2,2,2,2}, rank=-4≡3 (mod 7) {2,2,2,2,2,1,1}, rank=-5≡2 (mod 7) {2,2,2,2,1,1,1,1}, rank=-6≡1 (mod 7) {2,2,2,1,1,1,1,1,1}, rank=-7≡0 (mod 7) {2,2,1,1,1,1,1,1,1,1}, rank=-8≡6 (mod 7) {2,1,1,1,1,1,1,1,1,1,1}, rank=-9≡5 (mod 7) {1,1,1,1,1,1,1,1,1,1,1,1}, rank=-11≡3 (mod 7)



재미있는 사실

  • In 1944, the crank was first hinted at by Freeman Dyson (2), then an undergraduate at Cambridge University. He had written an article, titled Some Guesses in the Theory of Partitions, for Eureka, the undergraduate mathematics journal of Cambridge.




메모

관련된 항목들

수학용어번역




관련논문