"정다면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 38개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>간단한 소개</h5>
+
==개요==
  
* 볼록 다면체 중에서 모든 면이 합동인 정다각형으로 이루어져 있으며, 각 꼭지점에서 만나는 면의 개수가 같은 도형
+
* 다면체 중에서 모든 면이 합동인 정다각형으로 이루어져 있으며, 각 꼭지점에서 만나는 면의 개수가 같은 도형볼록한 정다면체는 다섯가지가 존재한다.
 +
** 정사면체, 정육면체, 정팔면체, 정십이면체, 정이십면체
 +
* 오목한 정다면체는 네 가지가 존재한다.
 +
** 작은 별모양 정십이면체, 큰 별모양 정십이면체, 큰 정이십면체, 큰 정십이면체
  
* <br>  <br>
+
==다섯개의 볼록 정다면체==
*  다섯개만이 존재<br>
+
* 정사면체
** 정사면체
+
* 정육면체
** 정육면체
+
* 정팔면체
** 정팔면체
+
* 정십이면체
** 정십이면체
+
* [[정이십면체]]
** 정이십면체
 
  
 
+
{| width="1259" style="margin: 1em auto; text-align: center; border-collapse: collapse; font-size: 12px;"
 +
|-
 +
| 다면체
 +
| 점 <em style="">V</em>
 +
| 선 <em style="">E</em>
 +
| 면 <em style="">F</em>
 +
| <em style="">V-E+F</em>
 +
| 한점에서의 결손각(angle defect) <em style="">A</em>
 +
| 결손각의 총합 <em style="">V × A</em>
 +
|-
 +
| 정사면체
  
 
+
| 4
 +
| 6
 +
| 4
 +
| 4-6+4=2
 +
| <math>2\pi-3\times\frac{\pi}{3}=\pi</math>
 +
| <math>4\times\pi=4\pi</math>
 +
|-
 +
| 정육면체
  
<h5>분류에 대한 기하학적 증명</h5>
+
| 8
 +
| 12
 +
| 6
 +
| 8-12+6=2
 +
| <math>2\pi-3\times\frac{\pi}{2}=\frac{\pi}{2}</math>
 +
| <math>8\times\frac{\pi}{2}=4\pi</math>
 +
|-
 +
| 정팔면체
  
 
+
| 6
 +
| 12
 +
| 8
 +
| 6-12+8=2
 +
| <math>2\pi-4\times\frac{\pi}{3}=\frac{2\pi}{3}</math>
 +
| <math>6\times\frac{2\pi}{3}=4\pi</math>
 +
|-
 +
| 정십이면체
  
 
+
| 20
 +
| 30
 +
| 12
 +
| 20-30+12=2
 +
| <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math>
 +
| <math>20\times\frac{\pi}{5}=4\pi</math>
 +
|-
 +
| 정이십면체
  
 
+
| 12
 +
| 30
 +
| 20
 +
| 12-30+20=2
 +
| <math>2\pi-5\times\frac{\pi}{3}=\frac{\pi}{3}</math>
 +
| <math>12\times\frac{\pi}{3}=4\pi</math>
 +
|}
  
<h5>오일러의 정리를 사용하는 증명</h5>
+
==네개의 오목 정다면체==
 +
* 작은 별모양 정십이면체
 +
* 큰 별모양 정십이면체
 +
* 큰 정십이면체
 +
* 큰 정이십면체
 +
 
 +
{| width="1259" style="line-height: 2em; width: 896px; margin: 1em auto; border-collapse: collapse; font-size: 12px; background-color: rgb(255, 255, 255); text-align: center;"
 +
|-
 +
| 다면체
 +
| 점 <em style="line-height: 2em;">V</em>
 +
| 선 <em style="line-height: 2em;">E</em>
 +
| 면 <em style="line-height: 2em;">F</em>
 +
|-
 +
| 작은 별모양 정십이면체
 +
| 30
 +
| 12
 +
| 12
 +
|-
 +
| 큰 별모양 정십이면체
 +
| 30
 +
| 20
 +
| 12
 +
|-
 +
| 큰 정십이면체
 +
| 30
 +
| 12
 +
| 12
 +
|-
 +
| 큰 정이십면체
 +
| 30
 +
| 12
 +
| 20
 +
|}
 +
 
 +
 +
 
 +
==정다면체의 분류==
  
 
* [[다면체에 대한 오일러의 정리 V-E+F=2]] 를 사용
 
* [[다면체에 대한 오일러의 정리 V-E+F=2]] 를 사용
 +
 +
  
 
(증명)
 
(증명)
57번째 줄: 141번째 줄:
 
<math>\frac{1}{p} + \frac{1}{q} > \frac{1}{2}</math>
 
<math>\frac{1}{p} + \frac{1}{q} > \frac{1}{2}</math>
  
부등식을 풀면, <math>\{3, 3\}, \{4, 3\},\{3, 4\},\{5, 3\},\{3,5\}</math> 다섯개의 해를 얻는다.
+
부등식을 풀면, <math>\{3, 3\}, \{4, 3\},\{3, 4\},\{5, 3\},\{3,5\}</math> 다섯개의 해를 얻는다.
 
 
 
 
 
 
 
 
 
 
<h5>플라톤과 정다면체</h5>
 
  
플라톤은 티마이오스에서, 우주가 4가지의 원소로 구성되어 있다고 했다. 불;공기;물 그리고 땅이 그것이다.<br> 정다면체를 영어로 Platonic Solids 라고 한다. 플라톤이 직접 이것을 발견한 것은 아니었지만, 이렇게 플라톤의 이름이 여기에 붙게 된 것은 아마도, 플라톤이 위의 티마이오스에서, 각각의 원소를 각각의 정다면체에 대응시켜 놓았기 때문일 것이다. 불=정사면체, 공기=정팔면체, 물=정이십면체, 땅=정육면체 그리고 하나 남은 정십이면체는 우주전체이다.
+
  
 
+
  
 
+
==군론을 통한 증명==
 +
 +
  
 
+
  
<h5>케플러와 정다면체</h5>
+
==플라톤과 정다면체==
  
케플러는 행성의 운동에 대한 여러가지 가설들을 만들고 테스트했는데, 그 중에 재밌는 것이 있다. 케플러의 시대만 하더라도, 알려진 행성이 여섯개였다고 한다. 수성, 금성, 지구, 화성, 목성, 토성이 바로 그것들이다. 여기서 케플러는 정다면체가 다섯개밖에 없다는 사실을 우연이 아니라고 생각했다.<br> 먼저 큰 구를 하나 가져온다. 토성의 궤도가 이 구에 놓인다. 그 다음 그 구에 내접하는 정육면체를 그리고, 다시 정육면체에 내접하는 구를 그린다. 이 구에 목성의 궤도가 놓인다. 그 다음 구에 내접하는 정사면체와 정사면체에 내접하는 구를 그린다. 이 구에 화성의 궤도가 놓인다. 그 다음 정십이면체, 정이십면체, 마지막으로 정팔면체를 그려나가면서, 지구, 금성, 수성의 궤도를 만들어 간다. 케플러는 정다면체가 다섯개밖에 없다는 사실이 여섯개의 행성이 존재한다는 사실을 설명할 것이라 생각했다. 그러나 아마도 그는 관측결과를 바탕으로 행성운동에 대한 법칙을 세울 줄 알았던 위대한 과학자였으므로, 곧 관측 결과들이 궤도의 거리들과 일치하지 않는다는 점을 곧 깨달았을 것이다. 물론 나중에 천왕성이 발견됨으로써, 그의 이론은 산산조각이 났다.
+
플라톤은 티마이오스에서, 우주가 4가지의 원소로 구성되어 있다고 했다. 불;공기;물 그리고 땅이 그것이다. 정다면체를 영어로 Platonic Solids 라고 한다. 플라톤이 직접 이것을 발견한 것은 아니었지만, 이렇게 플라톤의 이름이 여기에 붙게 된 것은 아마도, 플라톤이 위의 티마이오스에서, 각각의 원소를 각각의 정다면체에 대응시켜 놓았기 때문일 것이다. 불=정사면체, 공기=정팔면체, 물=정이십면체, 땅=정육면체 그리고 하나 남은 정십이면체는 우주전체이다.
  
 
+
  
 
+
  
 
+
  
 
+
==케플러와 정다면체==
  
 
+
케플러는 행성의 운동에 대한 여러가지 가설들을 만들고 테스트했는데, 그 중에 재밌는 것이 있다. 케플러의 시대만 하더라도, 알려진 행성이 여섯개였다고 한다. 수성, 금성, 지구, 화성, 목성, 토성이 바로 그것들이다. 여기서 케플러는 정다면체가 다섯개밖에 없다는 사실을 우연이 아니라고 생각했다. 먼저 큰 구를 하나 가져온다. 토성의 궤도가 이 구에 놓인다. 그 다음 그 구에 내접하는 정육면체를 그리고, 다시 정육면체에 내접하는 구를 그린다. 이 구에 목성의 궤도가 놓인다. 그 다음 구에 내접하는 정사면체와 정사면체에 내접하는 구를 그린다. 이 구에 화성의 궤도가 놓인다. 그 다음 정십이면체, 정이십면체, 마지막으로 정팔면체를 그려나가면서, 지구, 금성, 수성의 궤도를 만들어 간다. 케플러는 정다면체가 다섯개밖에 없다는 사실이 여섯개의 행성이 존재한다는 사실을 설명할 것이라 생각했다. 그러나 아마도 그는 관측결과를 바탕으로 행성운동에 대한 법칙을 세울 줄 알았던 위대한 과학자였으므로, 곧 관측 결과들이 궤도의 거리들과 일치하지 않는다는 점을 곧 깨달았을 것이다. 물론 나중에 천왕성이 발견됨으로써, 그의 이론은 산산조각이 났다.
  
 
+
  
<h5>하위주제들</h5>
+
  
 
+
==재미있는 사실==
  
 
+
* 살바도르 달리의 그림 '최후의 만찬'에는 정십이면체가 등장함
 
 
 
 
 
 
==== 하위페이지 ====
 
 
 
* [[1964250|0 토픽용템플릿]]<br>
 
** [[2060652|0 상위주제템플릿]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
살바도르 달리의 그림 '최후의 만찬'에는 정십이면체가 등장함<br>
 
 
** http://images.google.com/images?q=dali+last+supper
 
** http://images.google.com/images?q=dali+last+supper
* 파치올리<br>
+
* 파치올리
 
** http://images.google.com/images?q=pacioli
 
** http://images.google.com/images?q=pacioli
* 뒤러의 melancholia<br>
+
* 뒤러의 melancholia
** [http://images.google.com/images?hl=ko&sa=1&q=durer+melancholia http://images.google.com/images?q=durer_melancholia] <br>
+
** [http://images.google.com/images?hl=ko&sa=1&q=durer+melancholia http://images.google.com/images?q=durer_melancholia]
 
 
 
 
 
 
<h5>관련된 단원</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>많이 나오는 질문</h5>
 
 
 
*  네이버 지식인<br>
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
  
<h5>관련된 고교수학 또는 대학수학</h5>
+
  
 
+
==메모==
  
 
+
* http://virus.chem.ucla.edu/icosahedral_symmetry
 +
* Roya Zandi et al., “Origin of icosahedral symmetry in viruses,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 44 (November 2, 2004): 15556 -15560.
 +
* 카탈란 다면체
 +
* 아르키메데스 다면체
 +
* 마름모 이십면체 달력 [http://www.ii.uib.no/%7Earntzen/kalender/ http://www.ii.uib.no/~arntzen/kalender/]
 +
* [[24-cell]]
  
<h5>관련된 다른 주제들</h5>
+
==관련된 항목들==
  
 +
* [[3차원 유한회전군의 분류]]
 
* [[축구공의 수학]]
 
* [[축구공의 수학]]
 
* [[다면체에 대한 오일러의 정리 V-E+F=2]]
 
* [[다면체에 대한 오일러의 정리 V-E+F=2]]
 
* [[볼록다면체에 대한 데카르트 정리]]
 
* [[볼록다면체에 대한 데카르트 정리]]
 
* [[황금비]]
 
* [[황금비]]
*  
+
* [[구면기하학]]
 +
* [[타일링과 테셀레이션|테셀레이션]]
 +
 
 +
 +
  
 
+
==수학용어번역==
  
<h5>관련도서 및 추천도서</h5>
 
  
 
+
* {{학술용어집|url=isotropy}}
 +
* {{학술용어집|url=orbit}}
  
 
 
  
<h5>참고할만한 자료</h5>
+
==관련논문==
  
* [http://www.jstor.org/stable/1574735 Art and Mathematics: The Platonic Solids]<br>
+
* [http://www.jstor.org/stable/1574735 Art and Mathematics: The Platonic Solids]
** Michele Emmer
+
** Michele Emmer, Leonardo, Vol. 15, No. 4 (Autumn, 1982), pp. 277-282
** Leonardo, Vol. 15, No. 4 (Autumn, 1982), pp. 277-282
 
 
* [http://ko.wikipedia.org/wiki/%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://ko.wikipedia.org/wiki/정다면체]
 
* [http://ko.wikipedia.org/wiki/%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://ko.wikipedia.org/wiki/정다면체]
 
* http://en.wikipedia.org/wiki/Platonic_solids
 
* http://en.wikipedia.org/wiki/Platonic_solids
 
* 다음백과사전 [http://enc.daum.net/dic100/search.do?q=%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://enc.daum.net/dic100/search.do?q=정다면체]
 
* 다음백과사전 [http://enc.daum.net/dic100/search.do?q=%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://enc.daum.net/dic100/search.do?q=정다면체]
  
 
+
  
 
+
  
<h5>관련기사</h5>
+
==관련기사==
  
*  경향신문, 2007-6-19<br>
+
* [http://news.khan.co.kr/section/khan_art_view.html?mode=view&artid=200706190930252&code=900314 [영재교육원 수학특강](24) 축구공의 비밀(4)]
** [http://news.khan.co.kr/section/khan_art_view.html?mode=view&artid=200706190930252&code=900314 [영재교육원 수학특강](24) 축구공의 비밀(4)]
+
** 경향신문, 2007-6-19
 
+
* [http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=105&oid=009&aid=0000445147 [생활 속 과학] 빨대로 정다면체 만들기]
* [http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=105&oid=009&aid=0000445147 [생활 속 과학] 빨대로 정다면체 만들기]<br>
 
 
** 매일경제, 2005-06-15
 
** 매일경제, 2005-06-15
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%A0%95%EB%8B%A4%EB%A9%B4%EC%B2%B4 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=정다면체]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>이미지 검색</h5>
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
  
<h5>동영상</h5>
+
 +
[[분류:중학수학]]
 +
[[분류:테셀레이션]]
 +
[[분류:구면기하학]]
  
* http://www.youtube.com/results?search_type=&search_query=
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q188745 Q188745]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'platonic'}, {'LEMMA': 'solid'}]
 +
* [{'LOWER': 'platonic'}, {'LEMMA': 'polyhedron'}]

2021년 2월 17일 (수) 04:58 기준 최신판

개요

  • 다면체 중에서 모든 면이 합동인 정다각형으로 이루어져 있으며, 각 꼭지점에서 만나는 면의 개수가 같은 도형볼록한 정다면체는 다섯가지가 존재한다.
    • 정사면체, 정육면체, 정팔면체, 정십이면체, 정이십면체
  • 오목한 정다면체는 네 가지가 존재한다.
    • 작은 별모양 정십이면체, 큰 별모양 정십이면체, 큰 정이십면체, 큰 정십이면체

다섯개의 볼록 정다면체

다면체 V E F V-E+F 한점에서의 결손각(angle defect) A 결손각의 총합 V × A
정사면체 4 6 4 4-6+4=2 \(2\pi-3\times\frac{\pi}{3}=\pi\) \(4\times\pi=4\pi\)
정육면체 8 12 6 8-12+6=2 \(2\pi-3\times\frac{\pi}{2}=\frac{\pi}{2}\) \(8\times\frac{\pi}{2}=4\pi\)
정팔면체 6 12 8 6-12+8=2 \(2\pi-4\times\frac{\pi}{3}=\frac{2\pi}{3}\) \(6\times\frac{2\pi}{3}=4\pi\)
정십이면체 20 30 12 20-30+12=2 \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\) \(20\times\frac{\pi}{5}=4\pi\)
정이십면체 12 30 20 12-30+20=2 \(2\pi-5\times\frac{\pi}{3}=\frac{\pi}{3}\) \(12\times\frac{\pi}{3}=4\pi\)

네개의 오목 정다면체

  • 작은 별모양 정십이면체
  • 큰 별모양 정십이면체
  • 큰 정십이면체
  • 큰 정이십면체
다면체 V E F
작은 별모양 정십이면체 30 12 12
큰 별모양 정십이면체 30 20 12
큰 정십이면체 30 12 12
큰 정이십면체 30 12 20


정다면체의 분류


(증명)

정다면체가 F개의 정p각형으로 구성되어 있고, 각 꼭지점점에서 q개가 만난다고 하자.

꼭지점의 개수는

\(V = \frac{pF}{q}\)

변의 개수는

\(E = \frac{pF}{2}\)

여기서

\(n = qV = pF = 2E\) 로 두자.

오일러의 정리로부터,

\(2pq\times (V-E+F) = 2pq\times 2\)

\(2pn - pqn + 2qn= 4 pq\)

\(2pn + 2qn= 4 pq + pqn\)

양변을 \(2pqn\) 으로 나누면,

\(\frac{1}{q} + \frac{1}{p}= \frac{2}{n} + \frac{1}{2}\)

\(\frac{1}{p} + \frac{1}{q} > \frac{1}{2}\)

부등식을 풀면, \(\{3, 3\}, \{4, 3\},\{3, 4\},\{5, 3\},\{3,5\}\) 다섯개의 해를 얻는다.■



군론을 통한 증명

플라톤과 정다면체

플라톤은 티마이오스에서, 우주가 4가지의 원소로 구성되어 있다고 했다. 불;공기;물 그리고 땅이 그것이다. 정다면체를 영어로 Platonic Solids 라고 한다. 플라톤이 직접 이것을 발견한 것은 아니었지만, 이렇게 플라톤의 이름이 여기에 붙게 된 것은 아마도, 플라톤이 위의 티마이오스에서, 각각의 원소를 각각의 정다면체에 대응시켜 놓았기 때문일 것이다. 불=정사면체, 공기=정팔면체, 물=정이십면체, 땅=정육면체 그리고 하나 남은 정십이면체는 우주전체이다.




케플러와 정다면체

케플러는 행성의 운동에 대한 여러가지 가설들을 만들고 테스트했는데, 그 중에 재밌는 것이 있다. 케플러의 시대만 하더라도, 알려진 행성이 여섯개였다고 한다. 수성, 금성, 지구, 화성, 목성, 토성이 바로 그것들이다. 여기서 케플러는 정다면체가 다섯개밖에 없다는 사실을 우연이 아니라고 생각했다. 먼저 큰 구를 하나 가져온다. 토성의 궤도가 이 구에 놓인다. 그 다음 그 구에 내접하는 정육면체를 그리고, 다시 정육면체에 내접하는 구를 그린다. 이 구에 목성의 궤도가 놓인다. 그 다음 구에 내접하는 정사면체와 정사면체에 내접하는 구를 그린다. 이 구에 화성의 궤도가 놓인다. 그 다음 정십이면체, 정이십면체, 마지막으로 정팔면체를 그려나가면서, 지구, 금성, 수성의 궤도를 만들어 간다. 케플러는 정다면체가 다섯개밖에 없다는 사실이 여섯개의 행성이 존재한다는 사실을 설명할 것이라 생각했다. 그러나 아마도 그는 관측결과를 바탕으로 행성운동에 대한 법칙을 세울 줄 알았던 위대한 과학자였으므로, 곧 관측 결과들이 궤도의 거리들과 일치하지 않는다는 점을 곧 깨달았을 것이다. 물론 나중에 천왕성이 발견됨으로써, 그의 이론은 산산조각이 났다.



재미있는 사실


메모

관련된 항목들



수학용어번역

  • isotropy - 대한수학회 수학용어집
  • orbit - 대한수학회 수학용어집


관련논문



관련기사

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'platonic'}, {'LEMMA': 'solid'}]
  • [{'LOWER': 'platonic'}, {'LEMMA': 'polyhedron'}]