"직교다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 28개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[직교다항식과 special functions]]<br>
+
*  직교다항식(orthogonal polynomials)
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
 
 
*  직교다항식(orthogonal polynomials)<br>
 
 
** 직교성과 완비성
 
** 직교성과 완비성
** 3항 점화식 (3-term recurrence relation) 연분수와 관계
+
** 3항 점화식 (3-term recurrence relation) 연분수와 관계
** 삼각함수 곱셈공식의 일반화 linearization of products
+
** 삼각함수 곱셈공식의 일반화 linearization of products
 
** 스텀-리우빌 문제
 
** 스텀-리우빌 문제
 +
  
Difference Equations, Continued Fractions, and Orthogonal Polynomials (Walk Into a Bar) http://math.illinoisstate.edu/schebol/algebra-seminar-files/ortho.pdf
 
 
[http://www.math.u-szeged.hu/%7Ebaloghf/homepage/talks/ism_conf_2007.pdf Why is electrostatics in the complex plane interesting from a mathematical point of view?]
 
 
[http://www.maths.leeds.ac.uk/%7Ekisilv/courses/sp-funct.pdf http://www.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf]
 
 
 
 
 
 
 
 
 
 
 
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
 
 
* [[일변수미적분학]]
 
* [[복소함수론]]
 
* [[푸리에 해석]]
 
* [[상미분방정식]]
 
* 편미분방정식
 
 
 
 
 
 
 
 
==== 하위페이지 ====
 
 
* [[직교다항식과 special functions|Special functions]]<br>
 
** [[셀베르그 적분(Selberg integral)|Selberg 적분]]<br>
 
** [[Ubiquity of heat kernels]]<br>
 
** [[구면조화함수(spherical harmonics)]]<br>
 
** [[르장드르 다항식]]<br>
 
** [[에르미트 다항식(Hermite polynomials)]]<br>
 
** [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
 
** [[체비셰프 다항식]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>초등함수</h5>
 
 
* [[삼각함수]]
 
* [[로그 함수|로그함수]]
 
* [[지수함수]]
 
 
 
 
 
 
 
 
<h5>직교다항식</h5>
 
  
 +
===예===
 
* [[자코비 다항식]]
 
* [[자코비 다항식]]
* [[search?q=%EA%B5%AC%EB%A9%B4%EC%A1%B0%ED%99%94%ED%95%A8%EC%88%98%28spherical%20harmonics%29&parent id=1963936|구면조화함수(spherical harmonics)]]
+
* [[체비셰프 다항식]]
* 라게르 다항식
+
* [[르장드르 다항식]]
 +
* [[라게르 다항식]]
 +
* [[게겐바워 다항식(ultraspherical polynomials)]]
 +
* [[에르미트 다항식(Hermite polynomials)]]
 
* 윌슨 다항식
 
* 윌슨 다항식
* 게겐바워 다항식(ultraspherical polynomials)
+
* [[로저스-세괴 다항식 (Rogers-Szegő polynomials)]]
 
 
 
 
 
 
 
 
 
 
<h5>초기하함수</h5>
 
 
 
* [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-급수]]
 
* [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]
 
 
 
 
 
 
 
 
 
 
 
<h5>L-함수와 제타함수</h5>
 
 
 
* [[L-함수, 제타함수와 디리클레 급수]]
 
* [[리만제타함수|리만제타함수와 리만가설]]
 
* [[디리클레 베타함수]]
 
 
 
 
 
 
 
 
 
 
 
<h5>타원적분과 타원함수</h5>
 
 
 
* [[자코비 세타함수]]
 
* [[타원함수]]
 
* [[바이어슈트라스 타원함수 ℘|바이어슈트라스의 타원함수]]
 
* [[타원적분]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 
* [[베르누이 수|베르누이 수와 베르누이 다항식]]
 
 
 
 
 
 
 
 
 
  
 
 
  
 +
==메모==
 +
* Difference Equations, Continued Fractions, and Orthogonal Polynomials (Walk Into a Bar) http://math.illinoisstate.edu/schebol/algebra-seminar-files/ortho.pdf
 +
* [http://www.math.u-szeged.hu/%7Ebaloghf/homepage/talks/ism_conf_2007.pdf Why is electrostatics in the complex plane interesting from a mathematical point of view?]
 +
* [http://www.maths.leeds.ac.uk/%7Ekisilv/courses/sp-funct.pdf http://www.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf]
 
* [[감마함수]]
 
* [[감마함수]]
 
* [[다이감마 함수(digamma function)|Digamma 함수]]
 
* [[다이감마 함수(digamma function)|Digamma 함수]]
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
+
* [[오일러 베타적분(베타함수)]]
*  
 
  
 
 
  
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
 
+
* [[공대수 (coalgebra)]]
* [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]
+
* [[다이로그 함수(dilogarithm)]]
 
* [[삼각함수에는 왜 공식이 많은가?]]
 
* [[삼각함수에는 왜 공식이 많은가?]]
 
* [[오일러(1707-1783)]]
 
* [[오일러(1707-1783)]]
  
 
 
  
 
+
==메모==
 +
* Dumitriu, Ioana, Alan Edelman, and Gene Shuman. “MOPS: Multivariate Orthogonal Polynomials (symbolically).” arXiv:math-ph/0409066, September 23, 2004. http://arxiv.org/abs/math-ph/0409066.
  
 
 
  
<h5>관련논문</h5>
+
==리뷰, 에세이, 강의노트==
 +
* Wasson, Ryan D., and Robert Gilmore. 2013. “An Overview of the Relationship between Group Theory and Representation Theory to the Special Functions in Mathematical Physics.” arXiv:1309.2544 [math-Ph], September. http://arxiv.org/abs/1309.2544.
 +
* Ehrenpreis, Leon. 2010. “Special Functions.” Inverse Problems and Imaging 4 (4): 639–47. doi:10.3934/ipi.2010.4.639.
 +
* [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005
 +
* Kalnins, [http://www.revistas.unal.edu.co/index.php/recolma/article/viewFile/33654/33627 Special functions, Lie theory and partial differential equations], 1997
 +
* Koekoek, Roelof, and Rene F. Swarttouw. "The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue." arXiv preprint math/9602214 (1996). http://arxiv.org/abs/math/9602214
 +
* Kirillov, A. A., & Etingof, P. I. I. (1994). A unified representation-theoretic approach to special functions. Functional Analysis and Its Applications, 28(1), 73-76.
  
* [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005
+
 
* [http://www.jstor.org/stable/2321202 Ramanujan's Extensions of the Gamma and Beta Functions] Richard Askey, <cite>The American Mathematical Monthly</cite>, Vol. 87, No. 5 (May, 1980), pp. 346-359
+
==관련논문==
 +
* Koornwinder, Tom H. “Quadratic Transformations for Orthogonal Polynomials in One and Two Variables.” arXiv:1512.09294 [math], December 31, 2015. http://arxiv.org/abs/1512.09294.
 +
* Odake, Satoru. “Recurrence Relations of the Multi-Indexed Orthogonal Polynomials : III.” arXiv:1509.08213 [hep-Th, Physics:math-Ph, Physics:nlin], September 28, 2015. http://arxiv.org/abs/1509.08213.
 +
* Borzov, V. V., and E. V. Damaskinsky. ‘Comment on “On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials” [J. Math. Phys. {\bf 55}, 093511 (2014)]’. arXiv:1503.08202 [math-Ph], 27 March 2015. http://arxiv.org/abs/1503.08202.
 +
* Honnouvo, G., and K. Thirulogasanthar. ‘On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials’. arXiv:1305.2509 [math-Ph], 11 May 2013. http://arxiv.org/abs/1305.2509.
 +
* Dimitrov, Dimitar, and Yuan Xu. “Slater Determinants of Orthogonal Polynomials.” arXiv:1412.0326 [math-Ph], November 30, 2014. http://arxiv.org/abs/1412.0326.
 +
* Jafarov, E. I., N. I. Stoilova, and J. Van der Jeugt. ‘On a Pair of Difference Equations for the <math>_4F_3</math> Type Orthogonal Polynomials and Related Exactly-Solvable Quantum Systems’. arXiv:1411.6125 [math-Ph], 22 November 2014. http://arxiv.org/abs/1411.6125.
 +
[[분류:특수함수]]

2020년 12월 28일 (월) 02:57 기준 최신판

개요

  • 직교다항식(orthogonal polynomials)
    • 직교성과 완비성
    • 3항 점화식 (3-term recurrence relation) 연분수와 관계
    • 삼각함수 곱셈공식의 일반화 linearization of products
    • 스텀-리우빌 문제



메모


관련된 항목들


메모

  • Dumitriu, Ioana, Alan Edelman, and Gene Shuman. “MOPS: Multivariate Orthogonal Polynomials (symbolically).” arXiv:math-ph/0409066, September 23, 2004. http://arxiv.org/abs/math-ph/0409066.


리뷰, 에세이, 강의노트

  • Wasson, Ryan D., and Robert Gilmore. 2013. “An Overview of the Relationship between Group Theory and Representation Theory to the Special Functions in Mathematical Physics.” arXiv:1309.2544 [math-Ph], September. http://arxiv.org/abs/1309.2544.
  • Ehrenpreis, Leon. 2010. “Special Functions.” Inverse Problems and Imaging 4 (4): 639–47. doi:10.3934/ipi.2010.4.639.
  • The History and Future of Special Functions Stephen Wolfram, 2005
  • Kalnins, Special functions, Lie theory and partial differential equations, 1997
  • Koekoek, Roelof, and Rene F. Swarttouw. "The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue." arXiv preprint math/9602214 (1996). http://arxiv.org/abs/math/9602214
  • Kirillov, A. A., & Etingof, P. I. I. (1994). A unified representation-theoretic approach to special functions. Functional Analysis and Its Applications, 28(1), 73-76.


관련논문

  • Koornwinder, Tom H. “Quadratic Transformations for Orthogonal Polynomials in One and Two Variables.” arXiv:1512.09294 [math], December 31, 2015. http://arxiv.org/abs/1512.09294.
  • Odake, Satoru. “Recurrence Relations of the Multi-Indexed Orthogonal Polynomials : III.” arXiv:1509.08213 [hep-Th, Physics:math-Ph, Physics:nlin], September 28, 2015. http://arxiv.org/abs/1509.08213.
  • Borzov, V. V., and E. V. Damaskinsky. ‘Comment on “On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials” [J. Math. Phys. {\bf 55}, 093511 (2014)]’. arXiv:1503.08202 [math-Ph], 27 March 2015. http://arxiv.org/abs/1503.08202.
  • Honnouvo, G., and K. Thirulogasanthar. ‘On the Dimensions of the Oscillator Algebras Induced by Orthogonal Polynomials’. arXiv:1305.2509 [math-Ph], 11 May 2013. http://arxiv.org/abs/1305.2509.
  • Dimitrov, Dimitar, and Yuan Xu. “Slater Determinants of Orthogonal Polynomials.” arXiv:1412.0326 [math-Ph], November 30, 2014. http://arxiv.org/abs/1412.0326.
  • Jafarov, E. I., N. I. Stoilova, and J. Van der Jeugt. ‘On a Pair of Difference Equations for the \(_4F_3\) Type Orthogonal Polynomials and Related Exactly-Solvable Quantum Systems’. arXiv:1411.6125 [math-Ph], 22 November 2014. http://arxiv.org/abs/1411.6125.