"캐츠-무디 대수 (Kac-Moody algebra)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 12개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
* 유한차원 simple 리대수의 확장 | * 유한차원 simple 리대수의 확장 | ||
− | * 카르탄 데이터와 [[세르 관계식 (Serre relations)]] | + | * 카르탄 데이터와 [[세르 관계식 (Serre relations)]] 을 이용하여 정의 |
* 무한 차원 리대수 | * 무한 차원 리대수 | ||
− | * 세 가지 타입으로 분류 | + | * 세 가지 타입으로 분류 |
** finite type | ** finite type | ||
** affine type | ** affine type | ||
18번째 줄: | 10번째 줄: | ||
* 수학과 물리학의 여러 분야에서는 finite type, affine type의 캐츠-무디 대수가 중요한 역할을 한다 | * 수학과 물리학의 여러 분야에서는 finite type, affine type의 캐츠-무디 대수가 중요한 역할을 한다 | ||
− | + | ||
− | + | ||
==Cartan datum== | ==Cartan datum== | ||
− | + | ===Cartan datum <math>(A,P^{\vee},P,\Pi^{\vee},\Pi)</math>=== | |
* <math>A=(a_{ij})_{i,j\in I}</math> GCM | * <math>A=(a_{ij})_{i,j\in I}</math> GCM | ||
* <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : dual weight lattice | * <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : dual weight lattice | ||
30번째 줄: | 22번째 줄: | ||
* <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | * <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | ||
* <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | * <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots | ||
− | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j) | + | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}</math> : simple roots |
− | + | ===key concepts=== | |
− | + | * fundamental weights <math>\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}</math> | |
− | + | * <math>Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> : root lattice | |
− | + | * Weyl group <math>W=\langle r_{i}|i\in I\rangle</math> | |
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==캐츠-무디 대수의 세르 관계식== | ==캐츠-무디 대수의 세르 관계식== | ||
* 생성원 <math>e_i,f_i , (i\in I)</math>, <math>h\in \mathfrak{h}</math> | * 생성원 <math>e_i,f_i , (i\in I)</math>, <math>h\in \mathfrak{h}</math> | ||
− | * 세르 관계식 | + | * 세르 관계식 |
** <math>\left[h,h'\right]=0</math> | ** <math>\left[h,h'\right]=0</math> | ||
** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math> | ** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math> | ||
− | ** <math>\left[h,e_j\right]=\alpha_{j(h) | + | ** <math>\left[h,e_j\right]=\alpha_{j}(h)e_j</math> |
** <math>\left[h,f_j\right]=-\alpha_{j}(h)f_j</math> | ** <math>\left[h,f_j\right]=-\alpha_{j}(h)f_j</math> | ||
− | ** <math>\left(\ | + | ** <math>\left(\operatorname{ad} e_i\right)^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>) |
− | ** <math>\left(\ | + | ** <math>\left(\operatorname{ad} f_i\right)^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>) |
+ | |||
* [[세르 관계식 (Serre relations)]] | * [[세르 관계식 (Serre relations)]] | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==메모== | ==메모== | ||
− | + | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | |||
− | + | ==리뷰, 에세이, 강의노트== | |
+ | * Helgason, Sigurdur. ‘A Centennial: Wilhelm Killing and the Exceptional Groups’. The Mathematical Intelligencer 12 (3): 54–57. doi:[http://dx.doi.org/10.1007/BF03024019 10.1007/BF03024019]. | ||
+ | * Coleman, A. J. ‘The Greatest Mathematical Paper of All Time’. The Mathematical Intelligencer 11 (3): 29–38. doi:[http://dx.doi.org/10.1007/BF03025189 10.1007/BF03025189]. | ||
+ | * Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:[http://link.springer.com/article/10.1007%2FBF03025312 10.1007/BF03025312]. | ||
+ | * Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf | ||
+ | * O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824]. | ||
+ | |||
+ | |||
==수학용어번역== | ==수학용어번역== | ||
− | + | * {{Forvo|url=Kac}} | |
− | + | ||
− | * | + | [[분류:리군과 리대수]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2020년 12월 28일 (월) 03:00 기준 최신판
개요
- 유한차원 simple 리대수의 확장
- 카르탄 데이터와 세르 관계식 (Serre relations) 을 이용하여 정의
- 무한 차원 리대수
- 세 가지 타입으로 분류
- finite type
- affine type
- indefinite type
- 수학과 물리학의 여러 분야에서는 finite type, affine type의 캐츠-무디 대수가 중요한 역할을 한다
Cartan datum
Cartan datum \((A,P^{\vee},P,\Pi^{\vee},\Pi)\)
- \(A=(a_{ij})_{i,j\in I}\) GCM
- \(P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})\) : dual weight lattice
- \(\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\) : Cartan subalgebra
- \(P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
- \(\Pi^{\vee}=\{h_{i}|i\in I\}\) : simple coroots
- \(\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}\) : simple roots
key concepts
- fundamental weights \(\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}\)
- \(Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}\) : root lattice
- Weyl group \(W=\langle r_{i}|i\in I\rangle\)
캐츠-무디 대수의 세르 관계식
- 생성원 \(e_i,f_i , (i\in I)\), \(h\in \mathfrak{h}\)
- 세르 관계식
- \(\left[h,h'\right]=0\)
- \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
- \(\left[h,e_j\right]=\alpha_{j}(h)e_j\)
- \(\left[h,f_j\right]=-\alpha_{j}(h)f_j\)
- \(\left(\operatorname{ad} e_i\right)^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
- \(\left(\operatorname{ad} f_i\right)^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
리뷰, 에세이, 강의노트
- Helgason, Sigurdur. ‘A Centennial: Wilhelm Killing and the Exceptional Groups’. The Mathematical Intelligencer 12 (3): 54–57. doi:10.1007/BF03024019.
- Coleman, A. J. ‘The Greatest Mathematical Paper of All Time’. The Mathematical Intelligencer 11 (3): 29–38. doi:10.1007/BF03025189.
- Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:10.1007/BF03025312.
- Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf
- O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:10.1142/S0217979299002824.
수학용어번역
- Kac - 발음사전 Forvo