"평면 분할 (plane partitions)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 20개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
* [[평면 분할 (plane partitions)]]
 
  
 
+
==평면분할의 예==
 +
===2의 평면분할 목록===
 +
:<math>
 +
\left\{ \begin{array}{l}  \{2\} \end{array} , \begin{array}{l}  \{1,1\} \end{array} , \begin{array}{l}  \{1\} \\  \{1\} \end{array} \right\}
 +
</math>
  
 
 
  
<h5>개요</h5>
+
===3의 평면분할===
 +
:<math>
 +
\left\{ \begin{array}{l}  \{3\} \end{array} , \begin{array}{l}  \{2,1\} \end{array} , \begin{array}{l}  \{1,1,1\} \end{array} , \begin{array}{l}  \{2\} \\  \{1\} \end{array} , \begin{array}{l}  \{1,1\} \\  \{1\} \end{array} , \begin{array}{l}  \{1\} \\  \{1\} \\  \{1\} \end{array} \right\}
 +
</math>
  
 
+
===4의 평면분할===
 +
:<math>
 +
\left\{
 +
\begin{array}{c}
 +
\{4\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{2,2\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{3,1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{2,1,1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{1,1,1,1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{2\} \\
 +
\{2\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{3\} \\
 +
\{1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{1,1\} \\
 +
\{1,1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{2,1\} \\
 +
\{1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{1,1,1\} \\
 +
\{1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{2\} \\
 +
\{1\} \\
 +
\{1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{1,1\} \\
 +
\{1\} \\
 +
\{1\} \\
 +
\end{array}
 +
,
 +
\begin{array}{c}
 +
\{1\} \\
 +
\{1\} \\
 +
\{1\} \\
 +
\{1\} \\
 +
\end{array}
 +
\right\}
 +
</math>
  
 
 
  
<h5>2의 평면분할 목록</h5>
+
==생성함수==
 +
* 다음과 같이 무한곱으로 표현가능하다
 +
:<math>
 +
\begin{aligned}
 +
\sum_{\pi:\text{plane partitions}}q^{|\pi|} & = \prod_{n=1}^\infty \frac {1}{(1-q^n)^n}  \\
 +
& =1 + q + 3 q^2 + 6 q^3 + 13 q^4 + 24 q^5 + 48 q^6 + 86 q^7 + 160 q^8 +
 +
282 q^9 + 500 q^{10}+\cdots
 +
\end{aligned}
 +
</math>
 +
  
<math>\left\{ \begin{array}{l}  \{2\} \end{array} , \begin{array}{l}  \{1,1\} \end{array} , \begin{array}{l}  \{1\} \\  \{1\} \end{array} \right\}</math>
+
==메모==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>3의 평면분할</h5>
 
 
 
<math>\left\{ \begin{array}{l}  \{3\} \end{array} , \begin{array}{l}  \{2,1\} \end{array} , \begin{array}{l}  \{1,1,1\} \end{array} , \begin{array}{l}  \{2\} \\  \{1\} \end{array} , \begin{array}{l}  \{1,1\} \\  \{1\} \end{array} , \begin{array}{l}  \{1\} \\  \{1\} \\  \{1\} \end{array} \right\}</math>
 
 
 
 
 
 
 
 
 
 
 
<h5>역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
  
 
* http://users.telenet.be/Wouter.Meeussen/?C=M;O=A
 
* http://users.telenet.be/Wouter.Meeussen/?C=M;O=A
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
  
 
+
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMGI2OTE4NTMtYWMzZS00OWZjLTliYTgtZThiMjM2YmY2ZTg5&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMGI2OTE4NTMtYWMzZS00OWZjLTliYTgtZThiMjM2YmY2ZTg5&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
+
  
 
+
==사전 형태의 자료==
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Plane_partition
 
* http://en.wikipedia.org/wiki/Plane_partition
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
<h5>리뷰논문, 에세이, 강의노트</h5>
 
 
 
 
 
 
 
  
 
 
  
<h5>관련논문</h5>
+
==리뷰, 에세이, 강의노트==
 +
* Krattenthaler, C. ‘Plane Partitions in the Work of Richard Stanley and His School’. arXiv:1503.05934 [math], 19 March 2015. http://arxiv.org/abs/1503.05934.
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
==관련논문==
 +
* Andrij Rovenchak, Statistical mechanics approach in the counting of integer partitions, http://arxiv.org/abs/1603.01049v1
 +
* Kamioka, Shuhei. “Plane Partitions with Bounded Size of Parts and Biorthogonal Polynomials.” arXiv:1508.01674 [math], August 7, 2015. http://arxiv.org/abs/1508.01674.
 +
* Gessel, Ira M. “A Historical Survey of P-Partitions.” arXiv:1506.03508 [math], June 10, 2015. http://arxiv.org/abs/1506.03508.
 +
* Ciucu, Mihai. ‘Four Factorization Formulas for Plane Partitions’. arXiv:1503.07915 [cond-Mat], 26 March 2015. http://arxiv.org/abs/1503.07915.
 +
* Destainville, Nicolas, and Suresh Govindarajan. 2014. “Estimating the Asymptotics of Solid Partitions.” arXiv:1406.5605 [cond-Mat, Physics:hep-Th], June. http://arxiv.org/abs/1406.5605.
  
<h5>관련도서</h5>
+
 +
[[분류:q-급수]]
 +
[[분류:분할수]]
  
도서내검색<br>
+
==메타데이터==
** http://books.google.com/books?q=
+
===위키데이터===
** http://book.daum.net/search/contentSearch.do?query=
+
* ID : [https://www.wikidata.org/wiki/Q7201015 Q7201015]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'plane'}, {'LEMMA': 'partition'}]

2021년 2월 17일 (수) 05:06 기준 최신판

개요

평면분할의 예

2의 평면분할 목록

\[ \left\{ \begin{array}{l} \{2\} \end{array} , \begin{array}{l} \{1,1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \end{array} \right\} \]


3의 평면분할

\[ \left\{ \begin{array}{l} \{3\} \end{array} , \begin{array}{l} \{2,1\} \end{array} , \begin{array}{l} \{1,1,1\} \end{array} , \begin{array}{l} \{2\} \\ \{1\} \end{array} , \begin{array}{l} \{1,1\} \\ \{1\} \end{array} , \begin{array}{l} \{1\} \\ \{1\} \\ \{1\} \end{array} \right\} \]

4의 평면분할

\[ \left\{ \begin{array}{c} \{4\} \\ \end{array} , \begin{array}{c} \{2,2\} \\ \end{array} , \begin{array}{c} \{3,1\} \\ \end{array} , \begin{array}{c} \{2,1,1\} \\ \end{array} , \begin{array}{c} \{1,1,1,1\} \\ \end{array} , \begin{array}{c} \{2\} \\ \{2\} \\ \end{array} , \begin{array}{c} \{3\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1\} \\ \{1,1\} \\ \end{array} , \begin{array}{c} \{2,1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1,1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{2\} \\ \{1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1,1\} \\ \{1\} \\ \{1\} \\ \end{array} , \begin{array}{c} \{1\} \\ \{1\} \\ \{1\} \\ \{1\} \\ \end{array} \right\} \]


생성함수

  • 다음과 같이 무한곱으로 표현가능하다

\[ \begin{aligned} \sum_{\pi:\text{plane partitions}}q^{|\pi|} & = \prod_{n=1}^\infty \frac {1}{(1-q^n)^n} \\ & =1 + q + 3 q^2 + 6 q^3 + 13 q^4 + 24 q^5 + 48 q^6 + 86 q^7 + 160 q^8 + 282 q^9 + 500 q^{10}+\cdots \end{aligned} \]


메모



관련된 항목들

매스매티카 파일 및 계산 리소스



사전 형태의 자료


리뷰, 에세이, 강의노트

  • Krattenthaler, C. ‘Plane Partitions in the Work of Richard Stanley and His School’. arXiv:1503.05934 [math], 19 March 2015. http://arxiv.org/abs/1503.05934.


관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'plane'}, {'LEMMA': 'partition'}]