"MathJax"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 5개는 보이지 않습니다)
11번째 줄: 11번째 줄:
 
: definition 2-2
 
: definition 2-2
  
==referencing==
+
==참조 예==
 
*[[맥스웰 방정식]]의 벡터 해석학적 표현
 
*[[맥스웰 방정식]]의 벡터 해석학적 표현
 
:<math>\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}</math>
 
:<math>\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}</math>
19번째 줄: 19번째 줄:
  
  
 +
 +
==newcommand 사용 예==
 +
<!-- some LaTeX macros we want to use: -->
 +
<math>
 +
  \newcommand{\Re}{\mathrm{Re}\,}
 +
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
 +
</math>
 +
 +
We consider, for various values of <math>s</math>, the <math>n</math>-dimensional integral
 +
\begin{align}
 +
  \label{def:Wns}
 +
  W_n (s)
 +
  &:=
 +
  \int_{[0, 1]^n}
 +
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 +
\end{align}
 +
which occurs in the theory of uniform random walk integrals in the plane,
 +
where at each step a unit-step is taken in a random direction.  As such,
 +
the integral \eqref{def:Wns} expresses the <math>s</math>-th moment of the distance
 +
to the origin after <math>n</math> steps.
 +
 +
By experimentation and some sketchy arguments we quickly conjectured and
 +
strongly believed that, for <math>k</math> a nonnegative integer
 +
\begin{align}
 +
  \label{eq:W3k}
 +
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
 +
\end{align}
 +
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
 +
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
 +
at the end of the paper.
  
 
==관련된 항목들==
 
==관련된 항목들==
 
* [[수식표현 안내]]
 
* [[수식표현 안내]]
 +
[[분류:수식표현]]

2020년 11월 12일 (목) 07:24 기준 최신판

관련링크


문서 구조

item 1
definition 1
item 2
definition 2-1
definition 2-2

참조 예

\[\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}\] \[\int_{C} \mathbf{E}\cdot\,d\mathbf{r} =-\frac{d}{dt}\iint_{S} \mathbf{B}\cdot\,d\mathbf{S}\label{far} \]

  • \ref{gau}를 가우스 법칙이라 한다
  • \ref{far}를 패러데이 법칙이라 한다


newcommand 사용 예

\( \newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} \)

We consider, for various values of \(s\), the \(n\)-dimensional integral \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance to the origin after \(n\) steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for \(k\) a nonnegative integer \begin{align} \label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

관련된 항목들