"역행렬"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 6개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
− | + | ||
− | + | ||
− | + | ||
==가우스-조단 소거법을 이용한 계산== | ==가우스-조단 소거법을 이용한 계산== | ||
− | * 주어진 행렬은 다음과 같다 | + | * 주어진 행렬은 다음과 같다:<math>\left( \begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right)</math> |
− | * [[가우스-조단 소거법]] 을 이용하기 위해, 다음과 같은 붙임행렬(augmented matrix)을 만든다 | + | * [[가우스-조단 소거법]] 을 이용하기 위해, 다음과 같은 붙임행렬(augmented matrix)을 만든다:<math>\left( \begin{array}{ccc|ccc} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right)</math> |
− | * 위의 행렬에 소거법을 적용하면, 다음의 행렬들을 얻는다 | + | * 위의 행렬에 소거법을 적용하면, 다음의 행렬들을 얻는다 |
− | * 위의 결과로부터 주어진 행렬의 역행렬은 다음과 같음을 알 수 있다 | + | :<math>\begin{array}{l} \left( \begin{array}{ccc|ccc} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \end{array}</math> |
− | + | * 위의 결과로부터 주어진 행렬의 역행렬은 다음과 같음을 알 수 있다:<math>\left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right)</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ||
==메모== | ==메모== | ||
− | + | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
* 붙임행렬(augmented matrix) | * 붙임행렬(augmented matrix) | ||
− | * 단어사전 | + | * 단어사전 |
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=augmented | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=augmented | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | * [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
82번째 줄: | 64번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
94번째 줄: | 76번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
==리뷰논문, 에세이, 강의노트== | ==리뷰논문, 에세이, 강의노트== | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
[[분류:선형대수학]] | [[분류:선형대수학]] |
2020년 12월 28일 (월) 02:44 기준 최신판
개요
가우스-조단 소거법을 이용한 계산
- 주어진 행렬은 다음과 같다\[\left( \begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right)\]
- 가우스-조단 소거법 을 이용하기 위해, 다음과 같은 붙임행렬(augmented matrix)을 만든다\[\left( \begin{array}{ccc|ccc} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right)\]
- 위의 행렬에 소거법을 적용하면, 다음의 행렬들을 얻는다
\[\begin{array}{l} \left( \begin{array}{ccc|ccc} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & 1 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \\ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 & 2 & 3 \end{array} \right) \end{array}\]
- 위의 결과로부터 주어진 행렬의 역행렬은 다음과 같음을 알 수 있다\[\left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right)\]
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 붙임행렬(augmented matrix)
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxVXY0ZXBhcDQweGc/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations