"트리로그 함수(trilogarithm)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
<math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}</math> | <math>\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}</math> | ||
− | + | ||
− | + | ||
==역사== | ==역사== | ||
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q=trilogarithm | * http://www.google.com/search?hl=en&tbs=tl:1&q=trilogarithm | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | * | + | * |
− | + | ||
− | + | ||
==메모== | ==메모== | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | * [[원주율의 BBP 공식]] | + | * [[원주율의 BBP 공식]] |
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
− | * | + | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= |
− | * | + | * 발음사전 http://www.forvo.com/search/ |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
59번째 줄: | 53번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
− | + | ||
− | + | ||
==관련논문== | ==관련논문== | ||
− | * Goncharov, A. B. 2000. Geometry of the trilogarithm and the motivic Lie algebra of a field. math/0011168 (November 21). http://arxiv.org/abs/math/0011168. | + | * Goncharov, A. B. 2000. Geometry of the trilogarithm and the motivic Lie algebra of a field. math/0011168 (November 21). http://arxiv.org/abs/math/0011168. |
− | * The classical trilogarithm, algebraic | + | * The classical trilogarithm, algebraic <math>K</math>-theory of fields, and Dedekind zeta functions |
* http://www.jstor.org/action/doBasicSearch?Query=trilogarithm | * http://www.jstor.org/action/doBasicSearch?Query=trilogarithm | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
==블로그== | ==블로그== | ||
[[분류:다이로그]] | [[분류:다이로그]] |
2020년 12월 28일 (월) 03:03 기준 최신판
개요
\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}\)
역사
- http://www.google.com/search?hl=en&tbs=tl:1&q=trilogarithm
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사 연표
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Goncharov, A. B. 2000. Geometry of the trilogarithm and the motivic Lie algebra of a field. math/0011168 (November 21). http://arxiv.org/abs/math/0011168.
- The classical trilogarithm, algebraic \(K\)-theory of fields, and Dedekind zeta functions
- http://www.jstor.org/action/doBasicSearch?Query=trilogarithm
- http://www.ams.org/mathscinet
- http://dx.doi.org/