"베셀 함수"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  (새 문서: * http://mathoverflow.net/questions/105971/how-should-an-analytic-number-theorist-look-at-bessel-functions * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions])  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 6개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| + | ==개요==  | ||
| + | * 베셀 함수  | ||
| + | * 제1종 변형 베셀 함수  | ||
| + | * 제2종 변형 베셀함수  | ||
| + | :<math>  | ||
| + | K_{\nu }(x)= \int_0^{\infty } (\exp  (-x (\cosh  t))) (\cosh  (\nu  t)) \, dt  | ||
| + | </math>  | ||
| + | |||
| + | |||
| + | ==메모==  | ||
* http://mathoverflow.net/questions/105971/how-should-an-analytic-number-theorist-look-at-bessel-functions  | * http://mathoverflow.net/questions/105971/how-should-an-analytic-number-theorist-look-at-bessel-functions  | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]  | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]  | ||
| + | |||
| + | |||
| + | ==관련된 항목들==  | ||
| + | * [[분할수의 근사 공식 (하디-라마누잔-라데마커 공식)]]  | ||
| + | * [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)]]  | ||
| + | |||
| + | |||
| + | ==관련논문==  | ||
| + | * Zhi Qi, Theory of Bessel Functions of High Rank - II: Hankel Transforms and Fundamental Bessel Kernels, arXiv:1411.6710 [math.NT], November 25 2014, http://arxiv.org/abs/1411.6710  | ||
| + | * Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652  | ||
| + | * Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913  | ||
| + | * Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.  | ||
2020년 11월 16일 (월) 04:17 기준 최신판
개요
- 베셀 함수
 - 제1종 변형 베셀 함수
 - 제2종 변형 베셀함수
 
\[ K_{\nu }(x)= \int_0^{\infty } (\exp (-x (\cosh t))) (\cosh (\nu t)) \, dt \]
메모
- http://mathoverflow.net/questions/105971/how-should-an-analytic-number-theorist-look-at-bessel-functions
 - NIST Digital Library of Mathematical Functions
 
관련된 항목들
관련논문
- Zhi Qi, Theory of Bessel Functions of High Rank - II: Hankel Transforms and Fundamental Bessel Kernels, arXiv:1411.6710 [math.NT], November 25 2014, http://arxiv.org/abs/1411.6710
 - Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652
 - Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913
 - Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.