"함수 다이로그 항등식(functional dilogarithm identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
* 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화<br>
+
* 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화
 
**  2항 관계식, 반사공식(오일러) <math>0\leq x \leq 1</math> 일 때, :<math>L(x)+L(1-x)=L(1)</math>
 
**  2항 관계식, 반사공식(오일러) <math>0\leq x \leq 1</math> 일 때, :<math>L(x)+L(1-x)=L(1)</math>
 
** [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]] <math>0\leq x,y\leq 1</math> 일 때,  
 
** [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]] <math>0\leq x,y\leq 1</math> 일 때,  
 
:<math>L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=3L(1)</math>
 
:<math>L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=3L(1)</math>
 
* 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
 
* 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
* n 변수로 구성된 <math>(n^2+3n)/2</math> 항 관계식을 찾을 수 있음
+
* 가령 <math>A_n</math> 딘킨 다이어그램으로부터, n 변수로 구성된 <math>(n^2+3n)/2</math> 항 관계식을 찾을 수 있음
 +
* <math>2, 5, 9, 14, 20, 27, 35, 44, 54, 65,\cdots</math>
  
  
24번째 줄: 25번째 줄:
  
 
==9항 관계식==
 
==9항 관계식==
* $S$를 다음과 같이 두자
+
* <math>S</math>를 다음과 같이 두자
:<math>S=\left\{x,y,z,\frac{x z+x+z+1}{y},\frac{x y+x z+x+y^2+y z+2 y+z+1}{x y z},\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}</math>
+
:<math>
 +
S=\left\{x,y,z,\frac{(x+1) (z+1)}{y},\frac{(x+y+1) (y+z+1)}{x y z},\\
 +
\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}</math>
 
* 다이로그 함수에 대하여 다음이 성립한다
 
* 다이로그 함수에 대하여 다음이 성립한다
 
:<math>\sum_{a\in S}L(\frac{1}{1+a})=3L(1)</math>
 
:<math>\sum_{a\in S}L(\frac{1}{1+a})=3L(1)</math>
32번째 줄: 35번째 줄:
  
 
==14항 관계식==
 
==14항 관계식==
:<math>\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},\frac{(w+z+1) (x z+x+y+z+1)}{w y z},\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}</math>
+
:<math>
 +
\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},
 +
\frac{(w+z+1) (x z+x+y+z+1)}{w y z}\\,\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\\
 +
\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},
 +
\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}
 +
</math>
 
:<math>\sum_{a\in S}L(\frac{1}{1+a})=4L(1)</math>
 
:<math>\sum_{a\in S}L(\frac{1}{1+a})=4L(1)</math>
  
 +
 +
==메모==
 +
* http://perso.univ-rennes1.fr/luc.pirio/SELECTApirio.pdf
  
 
==역사==
 
==역사==
54번째 줄: 65번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Tomoki Nakanishi, Rogers dilogarithms of higher degree and generalized cluster algebras, arXiv:1605.04777 [math.QA], May 16 2016, http://arxiv.org/abs/1605.04777
 +
* Soudères, Ismaël. “Functional Equations for Rogers Dilogarithm.” arXiv:1509.02869 [math], September 9, 2015. http://arxiv.org/abs/1509.02869.
 +
* Kerr, Matt, James D. Lewis, and Patrick Lopatto. “Simplicial Abel-Jacobi Maps and Reciprocity Laws.” arXiv:1502.05459 [math], February 18, 2015. http://arxiv.org/abs/1502.05459.
 +
* Herbert Gangl, Functional equations and ladders for polylogarithms http://www.maths.dur.ac.uk/~dma0hg/ladders2_ams.pdf
 
* Nakanishi, Tomoki. 2011. “Dilogarithm Identities for Conformal Field Theories and Cluster Algebras: Simply Laced Case.” Nagoya Mathematical Journal 202 (June): 23–43. doi:10.1215/00277630-1260432.
 
* Nakanishi, Tomoki. 2011. “Dilogarithm Identities for Conformal Field Theories and Cluster Algebras: Simply Laced Case.” Nagoya Mathematical Journal 202 (June): 23–43. doi:10.1215/00277630-1260432.
*  Chapoton, Frédéric. 2005. “Functional Identities for the Rogers Dilogarithm Associated to Cluster Y-Systems.” <em>Bulletin of the London Mathematical Society</em> 37 (5) (October 1): 755 -760. doi:10.1112/S0024609305004510.<br>
+
*  Chapoton, Frédéric. 2005. “Functional Identities for the Rogers Dilogarithm Associated to Cluster Y-Systems.” <em>Bulletin of the London Mathematical Society</em> 37 (5) (October 1): 755 -760. doi:10.1112/S0024609305004510.
* [http://dx.doi.org/10.1023/A:1009709927327 Algebraic Dilogarithm Identities] ,Basil Gordon  and Richard J. Mcintosh, 1997
+
* Herbert Gangl, Functional equations of polylogarithms http://www.mathematik.hu-berlin.de/~maphy/kyoto.pdf
 +
* Zagier, D. "Special Values and Functional Equations of Polylogarithms." Appendix A in Structural Properties of Polylogarithms (Ed. L. Lewin) http://people.mpim-bonn.mpg.de/zagier/files/tex/LewinPolylogarithms/fulltext.pdf
 
* L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:[http://dx.doi.org/10.1112/plms/s2-4.1.169%20 10.1112/plms/s2-4.1.169]
 
* L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:[http://dx.doi.org/10.1112/plms/s2-4.1.169%20 10.1112/plms/s2-4.1.169]
  
 
[[분류:다이로그]]
 
[[분류:다이로그]]

2020년 11월 16일 (월) 04:09 기준 최신판

개요

  • 로저스 다이로그 함수 (Rogers' dilogarithm)가 만족시키는 두 함수 항등식의 일반화

\[L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=3L(1)\]

  • 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
  • 가령 \(A_n\) 딘킨 다이어그램으로부터, n 변수로 구성된 \((n^2+3n)/2\) 항 관계식을 찾을 수 있음
  • \(2, 5, 9, 14, 20, 27, 35, 44, 54, 65,\cdots\)


2항 관계식

  • \(S=\left\{x,\frac{1}{x}\right\}\)라 두면,

\[\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{1}{x}+1}\right)+L\left(\frac{1}{x+1}\right)=L(1)\]



5항 관계식

  • \(S=\left\{x,y,\frac{x+1}{y},\frac{y+1}{x},\frac{x+y+1}{x y}\right\}\) 이면,

\[\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{x+1}{y}+1}\right)+L\left(\frac{1}{\frac{y+1}{x}+1}\right)+L\left(\frac{1}{\frac{x+y+1}{x y}+1}\right)+L\left(\frac{1}{x+1}\right)+L\left(\frac{1}{y+1}\right)=2L(1)\]


9항 관계식

  • \(S\)를 다음과 같이 두자

\[ S=\left\{x,y,z,\frac{(x+1) (z+1)}{y},\frac{(x+y+1) (y+z+1)}{x y z},\\ \frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}\]

  • 다이로그 함수에 대하여 다음이 성립한다

\[\sum_{a\in S}L(\frac{1}{1+a})=3L(1)\]


14항 관계식

\[ \left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y}, \frac{(w+z+1) (x z+x+y+z+1)}{w y z}\\,\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\\ \frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z}, \frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\} \] \[\sum_{a\in S}L(\frac{1}{1+a})=4L(1)\]


메모

역사



매스매티카 파일 및 계산 리소스



관련논문

  • Tomoki Nakanishi, Rogers dilogarithms of higher degree and generalized cluster algebras, arXiv:1605.04777 [math.QA], May 16 2016, http://arxiv.org/abs/1605.04777
  • Soudères, Ismaël. “Functional Equations for Rogers Dilogarithm.” arXiv:1509.02869 [math], September 9, 2015. http://arxiv.org/abs/1509.02869.
  • Kerr, Matt, James D. Lewis, and Patrick Lopatto. “Simplicial Abel-Jacobi Maps and Reciprocity Laws.” arXiv:1502.05459 [math], February 18, 2015. http://arxiv.org/abs/1502.05459.
  • Herbert Gangl, Functional equations and ladders for polylogarithms http://www.maths.dur.ac.uk/~dma0hg/ladders2_ams.pdf
  • Nakanishi, Tomoki. 2011. “Dilogarithm Identities for Conformal Field Theories and Cluster Algebras: Simply Laced Case.” Nagoya Mathematical Journal 202 (June): 23–43. doi:10.1215/00277630-1260432.
  • Chapoton, Frédéric. 2005. “Functional Identities for the Rogers Dilogarithm Associated to Cluster Y-Systems.” Bulletin of the London Mathematical Society 37 (5) (October 1): 755 -760. doi:10.1112/S0024609305004510.
  • Herbert Gangl, Functional equations of polylogarithms http://www.mathematik.hu-berlin.de/~maphy/kyoto.pdf
  • Zagier, D. "Special Values and Functional Equations of Polylogarithms." Appendix A in Structural Properties of Polylogarithms (Ed. L. Lewin) http://people.mpim-bonn.mpg.de/zagier/files/tex/LewinPolylogarithms/fulltext.pdf
  • L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:10.1112/plms/s2-4.1.169