"Q-지수함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 q-지수함수로 바꾸었습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 18개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | + | * [[지수함수]] 의 q-analogue | |
+ | * 지수함수의 멱급수 표현 :<math>e^{z}=\sum_{n=0}^\infty \frac{z^n}{n!}</math> | ||
+ | * [[q-팩토리얼]] 은 다음과 같이 주어진다 :<math>[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q}</math> | ||
+ | * q-analogue 를 얻는다 | ||
+ | :<math>e_q(z)=\sum_{n=0}^\infty \frac{z^n}{[n]_q!}</math> | ||
+ | * 또다른 q-analogue :<math>E_q(z) = \;_{1}\phi_0 (0;q,z) = \prod_{n=0}^\infty \frac {1}{1-zq^n}</math> :<math>e_q(z) = E_q(z(1-q))</math> | ||
+ | * 본질적으로는 [[양자 다이로그 함수(quantum dilogarithm)]] 이다 | ||
− | |||
− | + | ==q-지수함수와 무한곱== | |
+ | * | ||
+ | :<math>e_{q}\left(\frac{z}{1-q}\right)=\sum_{n=0}^\infty \frac{z^n}{(1-q)^n [n]_q!}=\sum_{n=0}^\infty \frac{z^n}{(q)_n}</math> | ||
− | + | ==오일러곱== | |
− | + | * [[q-이항정리]] | |
+ | :<math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math> | ||
+ | :<math>\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math> | ||
− | + | ==역사== | |
− | + | ||
− | * | + | * http://www.google.com/search?hl=en&tbs=tl:1&q= |
− | + | * [[수학사 연표]] | |
− | + | * | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ||
− | |||
− | |||
− | + | ==메모== | |
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
− | + | * [[양자 다이로그 함수(quantum dilogarithm)]] | |
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
− | + | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | |
− | + | * 발음사전 http://www.forvo.com/search/ | |
− | * | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
− | * | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
68번째 줄: | 68번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | [[분류:q-급수]] | ||
− | + | ==메타데이터== | |
− | + | ===위키데이터=== | |
− | + | * ID : [https://www.wikidata.org/wiki/Q1062655 Q1062655] | |
− | + | ===Spacy 패턴 목록=== | |
− | + | * [{'LOWER': 'q'}, {'OP': '*'}, {'LEMMA': 'exponential'}] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2021년 2월 17일 (수) 03:52 기준 최신판
개요
- 지수함수 의 q-analogue
- 지수함수의 멱급수 표현 \[e^{z}=\sum_{n=0}^\infty \frac{z^n}{n!}\]
- q-팩토리얼 은 다음과 같이 주어진다 \[[n]_q!= [1]_q [2]_q \cdots [n-1]_q [n]_q=\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q}\]
- q-analogue 를 얻는다
\[e_q(z)=\sum_{n=0}^\infty \frac{z^n}{[n]_q!}\]
- 또다른 q-analogue \[E_q(z) = \;_{1}\phi_0 (0;q,z) = \prod_{n=0}^\infty \frac {1}{1-zq^n}\] \[e_q(z) = E_q(z(1-q))\]
- 본질적으로는 양자 다이로그 함수(quantum dilogarithm) 이다
q-지수함수와 무한곱
\[e_{q}\left(\frac{z}{1-q}\right)=\sum_{n=0}^\infty \frac{z^n}{(1-q)^n [n]_q!}=\sum_{n=0}^\infty \frac{z^n}{(q)_n}\]
오일러곱
\[\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\] \[\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Q-exponential
- http://mathworld.wolfram.com/q-ExponentialFunction.html
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
메타데이터
위키데이터
- ID : Q1062655
Spacy 패턴 목록
- [{'LOWER': 'q'}, {'OP': '*'}, {'LEMMA': 'exponential'}]