"하이젠베르크 스핀 1/2 XXZ 모형"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==개요== * 해밀토니안 :<math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z+1)=\sum_{j=1}^{L-1}P_{i,i+1}+P_{L,...) |
Pythagoras0 (토론 | 기여) |
||
2번째 줄: | 2번째 줄: | ||
* 해밀토니안 | * 해밀토니안 | ||
:<math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z+1)=\sum_{j=1}^{L-1}P_{i,i+1}+P_{L,1}</math> | :<math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z+1)=\sum_{j=1}^{L-1}P_{i,i+1}+P_{L,1}</math> | ||
− | * | + | * <math>\Delta=1</math>이면 [[하이젠베르크 스핀 1/2 XXX 모형(Heisenberg model)]]에 해당 |
* two body scattering term | * two body scattering term | ||
:<math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}</math> | :<math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}</math> |
2020년 11월 12일 (목) 06:53 기준 최신판
개요
- 해밀토니안
\[\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z+1)=\sum_{j=1}^{L-1}P_{i,i+1}+P_{L,1}\]
- \(\Delta=1\)이면 하이젠베르크 스핀 1/2 XXX 모형(Heisenberg model)에 해당
- two body scattering term
\[s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}\]
- phase shift term \(\theta(p,q)\)
\[\exp(-i\theta(k_j,k_l))=\frac{s_{l,j}}{s_{j,l}}=\frac{1-2\Delta e^{ik_j}+e^{i(k_j+k_l)}}{1-2\Delta e^{ik_l}+e^{i(k_j+k_l)}}\]
- 베테 안싸쯔 방정식
\[\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\exp(-i\theta(k_j,k_l))=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}, \quad j=1,\cdots, n\]
- fundamental equation
\[k_jL=2\pi I(k_j)+\sum_{l=1}^{n}\theta(k_j,k_l), \quad j=1,\cdots, n\]