"정수계수 이차형식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 9개는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
 
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
 
* [[정수계수 삼변수 이차형식(ternary integral quadratic forms)]]
 
* [[정수계수 삼변수 이차형식(ternary integral quadratic forms)]]
 +
* [[16차원 짝수 자기쌍대 격자]]
 +
* [[24차원 짝수 자기쌍대 격자]]
  
  
7번째 줄: 9번째 줄:
 
* [[밀그램의 정리]]
 
* [[밀그램의 정리]]
 
* [[스미스-민코프스키-지겔 질량 공식]]
 
* [[스미스-민코프스키-지겔 질량 공식]]
 +
* [[격자의 세타함수]]
  
  
14번째 줄: 17번째 줄:
  
 
==리뷰, 에세이, 강의노트==
 
==리뷰, 에세이, 강의노트==
 +
* Rudolf Scharlau, 2007, [http://www.mathematik.tu-dortmund.de/~scharlau/research/talks/scharlau-qfc2007.pdf Martin Kneser’s Work on Quadratic Forms and Algebraic Groups]
 
* Nebe, [http://www.math.rwth-aachen.de/~Gabriele.Nebe/talks/lat1op.pdf Lattices and modular forms]
 
* Nebe, [http://www.math.rwth-aachen.de/~Gabriele.Nebe/talks/lat1op.pdf Lattices and modular forms]
 
* Hoehn, Gerald. 2002. “Genera of Vertex Operator Algebras and Three Dimensional Topological Quantum Field Theories.” arXiv:math/0209333, September. http://arxiv.org/abs/math/0209333.
 
* Hoehn, Gerald. 2002. “Genera of Vertex Operator Algebras and Three Dimensional Topological Quantum Field Theories.” arXiv:math/0209333, September. http://arxiv.org/abs/math/0209333.
20번째 줄: 24번째 줄:
  
 
==관련논문==
 
==관련논문==
* Nebe, Gabriele, and Boris Venkov. “On Siegel Modular Forms of Weight 12.” Journal Für Die Reine Und Angewandte Mathematik 531 (2001): 49–60. doi:10.1515/crll.2001.009.
+
* Sardari, Naser Talebizadeh. “Optimal Strong Approximation for Quadratic Forms.” arXiv:1510.00462 [math], October 1, 2015. http://arxiv.org/abs/1510.00462.
* Borcherds, Richard E., E. Freitag, and R. Weissauer. “A Siegel Cusp Form of Degree 12 and Weight 12.” Journal Für Die Reine Und Angewandte Mathematik 494 (1998): 141–53. doi:10.1515/crll.1998.003.
+
* http://arxiv.org/abs/1509.04757
 +
* Nguyen, Phong Q., and Igor E. Shparlinski. ‘Counting Co-Cyclic Lattices’. arXiv:1505.06429 [cs, Math], 24 May 2015. http://arxiv.org/abs/1505.06429.
 +
* Chan, Wai Kiu, and James Ricci. ‘The Representation of Integers by Positive Ternary Quadratic Polynomials’. arXiv:1505.00281 [math], 1 May 2015. http://arxiv.org/abs/1505.00281.
 +
* Bhargava, M., J. E. Cremona, T. A. Fisher, N. G. Jones, and J. P. Keating. ‘What Is the Probability That a Random Integral Quadratic Form in <math>n</math> Variables Has an Integral Zero?’. arXiv:1502.05992 [math], 20 February 2015. http://arxiv.org/abs/1502.05992.
 +
* Nebe, Gabriele. “Automorphisms of Extremal Unimodular Lattices in Dimension 72.” arXiv:1409.8473 [math], September 30, 2014. http://arxiv.org/abs/1409.8473.
  
 
[[분류:정수론]]
 
[[분류:정수론]]

2020년 11월 16일 (월) 04:20 기준 최신판

개요


주요 정리


계산 리소스


리뷰, 에세이, 강의노트


관련논문

  • Sardari, Naser Talebizadeh. “Optimal Strong Approximation for Quadratic Forms.” arXiv:1510.00462 [math], October 1, 2015. http://arxiv.org/abs/1510.00462.
  • http://arxiv.org/abs/1509.04757
  • Nguyen, Phong Q., and Igor E. Shparlinski. ‘Counting Co-Cyclic Lattices’. arXiv:1505.06429 [cs, Math], 24 May 2015. http://arxiv.org/abs/1505.06429.
  • Chan, Wai Kiu, and James Ricci. ‘The Representation of Integers by Positive Ternary Quadratic Polynomials’. arXiv:1505.00281 [math], 1 May 2015. http://arxiv.org/abs/1505.00281.
  • Bhargava, M., J. E. Cremona, T. A. Fisher, N. G. Jones, and J. P. Keating. ‘What Is the Probability That a Random Integral Quadratic Form in \(n\) Variables Has an Integral Zero?’. arXiv:1502.05992 [math], 20 February 2015. http://arxiv.org/abs/1502.05992.
  • Nebe, Gabriele. “Automorphisms of Extremal Unimodular Lattices in Dimension 72.” arXiv:1409.8473 [math], September 30, 2014. http://arxiv.org/abs/1409.8473.