"홀-리틀우드(Hall-Littlewood) 대칭함수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 41개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
+ | * 양의 정수 <math>n</math>에 대하여, <math>x=(x_1,\dots,x_n)</math>로 두자 | ||
+ | * 분할 <math>\lambda=(\lambda_n, \cdots, \lambda_1),\, \lambda_n\geq \cdots\geq \lambda_1\geq 0</math>에 대하여, <math>x^{\lambda}</math>는 단항식 <math>x_1^{\lambda_1}\dots x_n^{\lambda_n}</math>를 나타냄 | ||
+ | * <math>m_i(\lambda)</math> 는 <math>\lambda</math>에서 <math>i</math>의 개수 | ||
+ | * 다음과 같이 <math>v_{\lambda}</math>를 정의 | ||
+ | :<math> | ||
+ | v_{\lambda}(t)=\prod_{i=0}^n \frac{(t)_{m_i}}{(1-t)^{m_i}} | ||
+ | </math> | ||
+ | * 홀-리틀우드 다항식 <math>P_{\lambda}(x;t)</math>은 다음과 같이 정의 | ||
+ | :<math> | ||
+ | P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)} | ||
+ | \sum_{w\in\mathfrak{S}_n} | ||
+ | w\bigg(x^{\lambda}\prod_{i<j}\frac{x_i-tx_j}{x_i-x_j}\bigg), | ||
+ | </math> | ||
+ | 여기서 대칭군 <math>\mathfrak{S}_n</math>는 <math>x</math>에 <math>x_i</math>의 치환으로 작용 | ||
+ | * <math>P_{\lambda}(x;t)</math>는 차수가 <math>\lvert\lambda \lvert</math>인 동차대칭다항식이다 | ||
+ | * 특수화 | ||
+ | ** <math>t=0</math>일 때, [[슈르 다항식(Schur polynomial)]] <math>s_{\lambda}</math>을 얻는다 | ||
+ | ** <math>t=1</math>일 때, [[단항 대칭 다항식 (monomial symmetric polynomial)]] <math>m_{\lambda}</math>을 얻는다 | ||
− | + | ==테이블== | |
+ | * 슈르다항식 <math>s_{\lambda}</math>, 단항 대칭 다항식 <math>m_{\lambda}</math>, 홀-리틀우드 다항식 <math>P_{\lambda}</math> | ||
+ | ===<math>n=2,d=3</math>=== | ||
+ | :<math> | ||
+ | \begin{array}{c|c|c} | ||
+ | \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ | ||
+ | \hline | ||
+ | \{3\} & x_1^3+x_2 x_1^2+x_2^2 x_1+x_2^3 & x_1^3+x_2^3 & x_1^3+(1-t) x_1^2 x_2+(1-t) x_1 x_2^2 +x_2^3 \\ | ||
+ | \{2,1\} & x_2 x_1^2+x_2^2 x_1 & x_1 x_2 \left(x_1+x_2\right) & x_2 x_1^2+x_2^2 x_1 \\ | ||
+ | \{1,1,1\} & 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | </math> | ||
− | + | ===<math>n=2,d=4</math>=== | |
+ | :<math> | ||
+ | \begin{array}{c|c|c} | ||
+ | \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ | ||
+ | \hline | ||
+ | \{4\} & x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 & x_1^4+x_2^4 & x_1^4+(1-t) x_1 x_2^3+(1-t) x_1^2 x_2^2+(1-t) x_1^3 x_2+x_2^4 \\ | ||
+ | \{3,1\} & x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 & x_1^3 x_2+x_1 x_2^3 & x_1^3 x_2+(1-t) x_1^2 x_2^2+x_1 x_2^3 \\ | ||
+ | \{2,2\} & x_1^2 x_2^2 & x_1^2 x_2^2 & x_1^2 x_2^2 \\ | ||
+ | \{2,1,1\} & 0 & 0 & 0 \\ | ||
+ | \{1,1,1,1\} & 0 & 0 & 0 | ||
+ | \end{array} | ||
+ | </math> | ||
− | spherical Macdonald functions | + | ==메모== |
− | [[분류: | + | * spherical Macdonald functions |
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[대칭다항식]] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxS25WNEVDRlRvSW8/edit | ||
+ | |||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * Macdonald, I. G. 1992. “Schur Functions: Theme and Variations.” In Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 498:5–39. Publ. Inst. Rech. Math. Av. Strasbourg: Univ. Louis Pasteur. http://www.ams.org/mathscinet-getitem?mr=1308728. http://emis.u-strasbg.fr/journals/SLC/opapers/s28macdonald.pdf | ||
+ | |||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | * Boris Feigin, Igor Makhlin, A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem, arXiv:1505.04269 [math.CO], May 16 2015, http://arxiv.org/abs/1505.04269 | ||
+ | * Piotr Pragacz, A Gysin formula for Hall-Littlewood polynomials, arXiv:1403.0788[math.AG], March 04 2014, http://arxiv.org/abs/1403.0788v8, Proc. Amer. Math. Soc. 143 (2015) no.11, 4705-4711 | ||
+ | * François Bergeron, A q-Analog of Foulke's conjecture, http://arxiv.org/abs/1602.08134v2 | ||
+ | * Duval, Antoine, and Vincent Pasquier. “Pieri Rules, Vertex Operators and Baxter Q-Matrix.” arXiv:1510.08709 [math-Ph, Physics:nlin], October 29, 2015. http://arxiv.org/abs/1510.08709. | ||
+ | * Wheeler, Michael, and Paul Zinn-Justin. “Refined Cauchy/Littlewood Identities and Six-Vertex Model Partition Functions: III. Deformed Bosons.” arXiv:1508.02236 [math-Ph], August 10, 2015. http://arxiv.org/abs/1508.02236. | ||
+ | * Feigin, Boris, and Igor Makhlin. “A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem.” arXiv:1505.04269 [math], May 16, 2015. http://arxiv.org/abs/1505.04269. | ||
+ | * Cori, Robert, Pasquale Petrullo, and Domenico Senato. “Hall-Littlewood Symmetric Functions via Yamanouchi Toppling Game.” arXiv:1412.0444 [math], December 1, 2014. http://arxiv.org/abs/1412.0444. | ||
+ | * Borodin, Alexei. “On a Family of Symmetric Rational Functions.” arXiv:1410.0976 [math], October 3, 2014. http://arxiv.org/abs/1410.0976. | ||
+ | * Venkateswaran, Vidya. 2014. “A P-Adic Interpretation of Some Integral Identities for Hall-Littlewood Polynomials.” arXiv:1407.3755 [math], July. http://arxiv.org/abs/1407.3755. | ||
+ | * Frechette, Claire, and Madeline Locus. 2014. “Combinatorial Properties of Rogers-Ramanujan-Type Identities Arising from Hall-Littlewood Polynomials.” arXiv:1407.2880 [math], July. http://arxiv.org/abs/1407.2880. | ||
+ | * Griffin, Michael J., Ken Ono, and S. Ole Warnaar. 2014. “A Framework of Rogers-Ramanujan Identities and Their Arithmetic Properties.” arXiv:1401.7718 [math], January. http://arxiv.org/abs/1401.7718. | ||
+ | * Bartlett, Nick, and S. Ole Warnaar. “Hall-Littlewood Polynomials and Characters of Affine Lie Algebras.” arXiv:1304.1602 [math], April 4, 2013. http://arxiv.org/abs/1304.1602. | ||
+ | * Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010. | ||
+ | * Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110. | ||
+ | * Warnaar, S. Ole. “Hall-Littlewood Functions and the <math>A_2</math> Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001. | ||
+ | * Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3. | ||
+ | * Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An <math>A_2</math> Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0. | ||
+ | * Kirillov, Anatol N. ‘New Combinatorial Formula for Modified Hall-Littlewood Polynomials’. arXiv:math/9803006, 2 March 1998. http://arxiv.org/abs/math/9803006. | ||
+ | * Jing, Naihuan. ‘Vertex Operators and Hall-Littlewood Symmetric Functions’. Advances in Mathematics 87, no. 2 (June 1991): 226–48. doi:10.1016/0001-8708(91)90072-F. | ||
+ | * Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250. | ||
+ | [[분류:대칭다항식]] |
2020년 11월 12일 (목) 23:41 기준 최신판
개요
- 양의 정수 \(n\)에 대하여, \(x=(x_1,\dots,x_n)\)로 두자
- 분할 \(\lambda=(\lambda_n, \cdots, \lambda_1),\, \lambda_n\geq \cdots\geq \lambda_1\geq 0\)에 대하여, \(x^{\lambda}\)는 단항식 \(x_1^{\lambda_1}\dots x_n^{\lambda_n}\)를 나타냄
- \(m_i(\lambda)\) 는 \(\lambda\)에서 \(i\)의 개수
- 다음과 같이 \(v_{\lambda}\)를 정의
\[ v_{\lambda}(t)=\prod_{i=0}^n \frac{(t)_{m_i}}{(1-t)^{m_i}} \]
- 홀-리틀우드 다항식 \(P_{\lambda}(x;t)\)은 다음과 같이 정의
\[ P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)} \sum_{w\in\mathfrak{S}_n} w\bigg(x^{\lambda}\prod_{i<j}\frac{x_i-tx_j}{x_i-x_j}\bigg), \] 여기서 대칭군 \(\mathfrak{S}_n\)는 \(x\)에 \(x_i\)의 치환으로 작용
- \(P_{\lambda}(x;t)\)는 차수가 \(\lvert\lambda \lvert\)인 동차대칭다항식이다
- 특수화
- \(t=0\)일 때, 슈르 다항식(Schur polynomial) \(s_{\lambda}\)을 얻는다
- \(t=1\)일 때, 단항 대칭 다항식 (monomial symmetric polynomial) \(m_{\lambda}\)을 얻는다
테이블
- 슈르다항식 \(s_{\lambda}\), 단항 대칭 다항식 \(m_{\lambda}\), 홀-리틀우드 다항식 \(P_{\lambda}\)
\(n=2,d=3\)
\[ \begin{array}{c|c|c} \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ \hline \{3\} & x_1^3+x_2 x_1^2+x_2^2 x_1+x_2^3 & x_1^3+x_2^3 & x_1^3+(1-t) x_1^2 x_2+(1-t) x_1 x_2^2 +x_2^3 \\ \{2,1\} & x_2 x_1^2+x_2^2 x_1 & x_1 x_2 \left(x_1+x_2\right) & x_2 x_1^2+x_2^2 x_1 \\ \{1,1,1\} & 0 & 0 & 0 \end{array} \]
\(n=2,d=4\)
\[ \begin{array}{c|c|c} \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ \hline \{4\} & x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 & x_1^4+x_2^4 & x_1^4+(1-t) x_1 x_2^3+(1-t) x_1^2 x_2^2+(1-t) x_1^3 x_2+x_2^4 \\ \{3,1\} & x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 & x_1^3 x_2+x_1 x_2^3 & x_1^3 x_2+(1-t) x_1^2 x_2^2+x_1 x_2^3 \\ \{2,2\} & x_1^2 x_2^2 & x_1^2 x_2^2 & x_1^2 x_2^2 \\ \{2,1,1\} & 0 & 0 & 0 \\ \{1,1,1,1\} & 0 & 0 & 0 \end{array} \]
메모
- spherical Macdonald functions
관련된 항목들
매스매티카 파일 및 계산 리소스
리뷰, 에세이, 강의노트
- Macdonald, I. G. 1992. “Schur Functions: Theme and Variations.” In Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 498:5–39. Publ. Inst. Rech. Math. Av. Strasbourg: Univ. Louis Pasteur. http://www.ams.org/mathscinet-getitem?mr=1308728. http://emis.u-strasbg.fr/journals/SLC/opapers/s28macdonald.pdf
관련논문
- Boris Feigin, Igor Makhlin, A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem, arXiv:1505.04269 [math.CO], May 16 2015, http://arxiv.org/abs/1505.04269
- Piotr Pragacz, A Gysin formula for Hall-Littlewood polynomials, arXiv:1403.0788[math.AG], March 04 2014, http://arxiv.org/abs/1403.0788v8, Proc. Amer. Math. Soc. 143 (2015) no.11, 4705-4711
- François Bergeron, A q-Analog of Foulke's conjecture, http://arxiv.org/abs/1602.08134v2
- Duval, Antoine, and Vincent Pasquier. “Pieri Rules, Vertex Operators and Baxter Q-Matrix.” arXiv:1510.08709 [math-Ph, Physics:nlin], October 29, 2015. http://arxiv.org/abs/1510.08709.
- Wheeler, Michael, and Paul Zinn-Justin. “Refined Cauchy/Littlewood Identities and Six-Vertex Model Partition Functions: III. Deformed Bosons.” arXiv:1508.02236 [math-Ph], August 10, 2015. http://arxiv.org/abs/1508.02236.
- Feigin, Boris, and Igor Makhlin. “A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem.” arXiv:1505.04269 [math], May 16, 2015. http://arxiv.org/abs/1505.04269.
- Cori, Robert, Pasquale Petrullo, and Domenico Senato. “Hall-Littlewood Symmetric Functions via Yamanouchi Toppling Game.” arXiv:1412.0444 [math], December 1, 2014. http://arxiv.org/abs/1412.0444.
- Borodin, Alexei. “On a Family of Symmetric Rational Functions.” arXiv:1410.0976 [math], October 3, 2014. http://arxiv.org/abs/1410.0976.
- Venkateswaran, Vidya. 2014. “A P-Adic Interpretation of Some Integral Identities for Hall-Littlewood Polynomials.” arXiv:1407.3755 [math], July. http://arxiv.org/abs/1407.3755.
- Frechette, Claire, and Madeline Locus. 2014. “Combinatorial Properties of Rogers-Ramanujan-Type Identities Arising from Hall-Littlewood Polynomials.” arXiv:1407.2880 [math], July. http://arxiv.org/abs/1407.2880.
- Griffin, Michael J., Ken Ono, and S. Ole Warnaar. 2014. “A Framework of Rogers-Ramanujan Identities and Their Arithmetic Properties.” arXiv:1401.7718 [math], January. http://arxiv.org/abs/1401.7718.
- Bartlett, Nick, and S. Ole Warnaar. “Hall-Littlewood Polynomials and Characters of Affine Lie Algebras.” arXiv:1304.1602 [math], April 4, 2013. http://arxiv.org/abs/1304.1602.
- Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010.
- Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110.
- Warnaar, S. Ole. “Hall-Littlewood Functions and the \(A_2\) Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001.
- Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3.
- Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An \(A_2\) Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0.
- Kirillov, Anatol N. ‘New Combinatorial Formula for Modified Hall-Littlewood Polynomials’. arXiv:math/9803006, 2 March 1998. http://arxiv.org/abs/math/9803006.
- Jing, Naihuan. ‘Vertex Operators and Hall-Littlewood Symmetric Functions’. Advances in Mathematics 87, no. 2 (June 1991): 226–48. doi:10.1016/0001-8708(91)90072-F.
- Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250.