"셀베르그 적분(Selberg integral)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 22개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==개요==  | ==개요==  | ||
| − | * [[오일러 베타적분(베타함수)  | + | * [[오일러 베타적분(베타함수)]]의 일반화  | 
:<math>  | :<math>  | ||
\begin{align} S_{n} (\alpha, \beta, \gamma) & =    | \begin{align} S_{n} (\alpha, \beta, \gamma) & =    | ||
| 7번째 줄: | 7번째 줄: | ||
& = \prod_{j = 0}^{n-1}  \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)}  {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},</math>  | & = \prod_{j = 0}^{n-1}  \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)}  {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},</math>  | ||
여기서  | 여기서  | ||
| − | + | :<math>  | |
\Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\}  | \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\}  | ||
| − | + | </math>  | |
*  n=1 인 경우  | *  n=1 인 경우  | ||
:<math>S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt</math>  | :<math>S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt</math>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==메모==  | ==메모==  | ||
| − | + | * Algebra (Coxeter groups, double affine Hecke algebras)  | |
| − | + | * Conformal field theory (KZ equations)  | |
| − | + | * Gauge theory (supersymmetry, AGT conjecture)  | |
| − | + | * Geometry (hyperplane arrangements)  | |
| + | * Number theory (moments <math>\zeta(s)</math>  | ||
| + | * Orthogonal polynomials (Generalised Jacobi polynomials)  | ||
| + | * Random matrices  | ||
| + | * Statistics  | ||
| + | * Statistical physics  | ||
==관련된 항목들==  | ==관련된 항목들==  | ||
| + | * [[오일러 베타적분(베타함수)|오일러 베타적분]]  | ||
| + | * [[맥도날드-메타 적분]]  | ||
| + | * [[타원 셀베르그 적분]]  | ||
| + | * [[Chowla-셀베르그 공식]]  | ||
| − | |||
| − | |||
| − | + | ==매스매티카 파일 및 계산 리소스==  | |
| + | * https://drive.google.com/file/d/0B8XXo8Tve1cxLVdyVDk2N0Yydjg/view  | ||
| − | + | ==사전 형태의 자료==  | |
| − | |||
| − | ==사전   | ||
| − | |||
| − | |||
* http://en.wikipedia.org/wiki/Selberg_integral  | * http://en.wikipedia.org/wiki/Selberg_integral  | ||
==리뷰, 에세이, 강의노트==  | ==리뷰, 에세이, 강의노트==  | ||
| − | *   | + | * Alessandro Zaccagnini, The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function, http://arxiv.org/abs/1603.02952v1  | 
| − | *   | + | * Warnaar, [http://www.maths.adelaide.edu.au/thomas.leistner/colloquium/20110805OleWarnaar/Selberg.pdf The Selberg Integral], 2011  | 
| + | * Warnaar, [http://www.maths.uq.edu.au/~uqowarna/talks/FPSAC08.pdf The Mukhin{Varchenko conjecture for type A], 2008  | ||
| + | * Warnaar, [http://www.maths.uq.edu.au/%7Euqowarna/talks/Wien.pdf Beta Integrals]  | ||
| + | * Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:[http://www.ams.org/journals/bull/2008-45-04/S0273-0979-08-01221-4/home.html 10.1090/S0273-0979-08-01221-4].  | ||
==관련논문==  | ==관련논문==  | ||
| + | * Peter J. Forrester, Volumes for <math>{\rm SL}_N(\mathbb R)</math>, the Selberg integral and random lattices, arXiv:1604.07462 [math-ph], April 25 2016, http://arxiv.org/abs/1604.07462  | ||
| + | * Rosengren, Hjalmar. “Selberg Integrals, Askey-Wilson Polynomials and Lozenge Tilings of a Hexagon with a Triangular Hole.” arXiv:1503.00971 [math], March 3, 2015. http://arxiv.org/abs/1503.00971.  | ||
| + | * Patterson, Samuel J. “Selberg Sums - a New Perspective.” arXiv:1411.7600 [math], November 27, 2014. http://arxiv.org/abs/1411.7600.  | ||
* Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.  | * Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.  | ||
| − | *   | + | * Mironov, S., A. Morozov, and Y. Zenkevich. ‘Generalized Jack Polynomials and the AGT Relations for the SU(3) Group’. JETP Letters 99, no. 2 (1 March 2014): 109–13. doi:10.1134/S0021364014020076.  | 
| − | **   | + | * Zhang, Hong, and Yutaka Matsuo. ‘Selberg Integral and SU(N) AGT Conjecture’. Journal of High Energy Physics 2011, no. 12 (December 2011). doi:10.1007/JHEP12(2011)106.  | 
| − | *   | + | * Mironov, A., Al Morozov, and And Morozov. ‘Matrix Model Version of AGT Conjecture and Generalized Selberg Integrals’. Nuclear Physics B 843, no. 2 (February 2011): 534–57. doi:10.1016/j.nuclphysb.2010.10.016.  | 
| − | *  | + | * Warnaar, S. Ole. “The <math>\mathfrak{sl}_3</math> Selberg Integral.” Advances in Mathematics 224, no. 2 (2010): 499–524. doi:10.1016/j.aim.2009.11.011.  | 
| − | + | * Warnaar, S. Ole. “A Selberg Integral for the Lie Algebra <math>A_n</math>.” Acta Mathematica 203, no. 2 (2009): 269–304. doi:10.1007/s11511-009-0043-x.  | |
| − | **   | + | * Warnaar, S. Ole. ‘The Mukhin--Varchenko Conjecture for Type A’. DMTCS Proceedings 0, no. 1 (22 December 2008). http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAJ0108.  | 
| + | * Luque, Jean-Gabriel, and Jean-Yves Thibon. “Hankel Hyperdeterminants and Selberg Integrals.” Journal of Physics A: Mathematical and General 36, no. 19 (May 16, 2003): 5267. doi:10.1088/0305-4470/36/19/306.  | ||
| + | * Tarasov, V., and A. Varchenko. ‘Selberg-Type Integrals Associated with SL3’. Letters in Mathematical Physics 65, no. 3 (1 September 2003): 173–85. doi:10.1023/B:MATH.0000010712.67685.9d.  | ||
| + | * Gustafson, Robert A. “A Generalization of Selberg’s Beta Integral.” Bulletin (New Series) of the American Mathematical Society 22, no. 1 (January 1990): 97–105.  | ||
| + | * Selberg, Atle. “Remarks on a Multiple Integral.” Norsk Mat. Tidsskr. 26 (1944): 71–78.  | ||
| + | |||
| + | [[분류:적분]]  | ||
| + | [[분류:특수함수]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q7447525 Q7447525]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'selberg'}, {'LEMMA': 'integral'}]  | ||
2021년 2월 17일 (수) 04:48 기준 최신판
개요
- 오일러 베타적분(베타함수)의 일반화
 
\[ \begin{align} S_{n} (\alpha, \beta, \gamma) & = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j |^{2 \gamma}\,dt_1 \cdots dt_n \\ & = \prod_{j = 0}^{n-1} \frac {\Gamma(\alpha + j \gamma) \Gamma(\beta + j \gamma) \Gamma (1 + (j+1)\gamma)} {\Gamma(\alpha + \beta + (n+j-1)\gamma) \Gamma(1+\gamma)} \end{align},\] 여기서 \[ \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>\max\{-\frac{1}{n},-\frac{\Re{\alpha}}{n-1},-\frac{\Re{\beta}}{n-1}\} \]
- n=1 인 경우
 
\[S_{1} (\alpha, \beta,\gamma)=B(\alpha,\beta) = \int_0^1t^{\alpha-1}(1-t)^{\beta-1}\,dt\]
메모
- Algebra (Coxeter groups, double affine Hecke algebras)
 - Conformal field theory (KZ equations)
 - Gauge theory (supersymmetry, AGT conjecture)
 - Geometry (hyperplane arrangements)
 - Number theory (moments \(\zeta(s)\)
 - Orthogonal polynomials (Generalised Jacobi polynomials)
 - Random matrices
 - Statistics
 - Statistical physics
 
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
리뷰, 에세이, 강의노트
- Alessandro Zaccagnini, The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function, http://arxiv.org/abs/1603.02952v1
 - Warnaar, The Selberg Integral, 2011
 - Warnaar, The Mukhin{Varchenko conjecture for type A, 2008
 - Warnaar, Beta Integrals
 - Forrester, Peter, and S. Warnaar. “The Importance of the Selberg Integral.” Bulletin of the American Mathematical Society 45, no. 4 (2008): 489–534. doi:10.1090/S0273-0979-08-01221-4.
 
관련논문
- Peter J. Forrester, Volumes for \({\rm SL}_N(\mathbb R)\), the Selberg integral and random lattices, arXiv:1604.07462 [math-ph], April 25 2016, http://arxiv.org/abs/1604.07462
 - Rosengren, Hjalmar. “Selberg Integrals, Askey-Wilson Polynomials and Lozenge Tilings of a Hexagon with a Triangular Hole.” arXiv:1503.00971 [math], March 3, 2015. http://arxiv.org/abs/1503.00971.
 - Patterson, Samuel J. “Selberg Sums - a New Perspective.” arXiv:1411.7600 [math], November 27, 2014. http://arxiv.org/abs/1411.7600.
 - Rains, Eric M. “Multivariate Quadratic Transformations and the Interpolation Kernel.” arXiv:1408.0305 [math], August 1, 2014. http://arxiv.org/abs/1408.0305.
 - Mironov, S., A. Morozov, and Y. Zenkevich. ‘Generalized Jack Polynomials and the AGT Relations for the SU(3) Group’. JETP Letters 99, no. 2 (1 March 2014): 109–13. doi:10.1134/S0021364014020076.
 - Zhang, Hong, and Yutaka Matsuo. ‘Selberg Integral and SU(N) AGT Conjecture’. Journal of High Energy Physics 2011, no. 12 (December 2011). doi:10.1007/JHEP12(2011)106.
 - Mironov, A., Al Morozov, and And Morozov. ‘Matrix Model Version of AGT Conjecture and Generalized Selberg Integrals’. Nuclear Physics B 843, no. 2 (February 2011): 534–57. doi:10.1016/j.nuclphysb.2010.10.016.
 - Warnaar, S. Ole. “The \(\mathfrak{sl}_3\) Selberg Integral.” Advances in Mathematics 224, no. 2 (2010): 499–524. doi:10.1016/j.aim.2009.11.011.
 - Warnaar, S. Ole. “A Selberg Integral for the Lie Algebra \(A_n\).” Acta Mathematica 203, no. 2 (2009): 269–304. doi:10.1007/s11511-009-0043-x.
 - Warnaar, S. Ole. ‘The Mukhin--Varchenko Conjecture for Type A’. DMTCS Proceedings 0, no. 1 (22 December 2008). http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAJ0108.
 - Luque, Jean-Gabriel, and Jean-Yves Thibon. “Hankel Hyperdeterminants and Selberg Integrals.” Journal of Physics A: Mathematical and General 36, no. 19 (May 16, 2003): 5267. doi:10.1088/0305-4470/36/19/306.
 - Tarasov, V., and A. Varchenko. ‘Selberg-Type Integrals Associated with SL3’. Letters in Mathematical Physics 65, no. 3 (1 September 2003): 173–85. doi:10.1023/B:MATH.0000010712.67685.9d.
 - Gustafson, Robert A. “A Generalization of Selberg’s Beta Integral.” Bulletin (New Series) of the American Mathematical Society 22, no. 1 (January 1990): 97–105.
 - Selberg, Atle. “Remarks on a Multiple Integral.” Norsk Mat. Tidsskr. 26 (1944): 71–78.
 
메타데이터
위키데이터
- ID : Q7447525
 
Spacy 패턴 목록
- [{'LOWER': 'selberg'}, {'LEMMA': 'integral'}]