"게겐바워 다항식(ultraspherical polynomials)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 직교다항식 $C_n^{(\lambda )}(x)$
+
* 직교다항식 <math>C_n^{(\lambda )}(x)</math>
* [[자코비 다항식]] $P_{n}^{(\alpha\,\beta)}(x)$의 특수한 경우
+
* [[자코비 다항식]] <math>P_{n}^{(\alpha\,\beta)}(x)</math>의 특수한 경우
$$
+
:<math>
 
C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x)
 
C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x)
$$
+
</math>
  
  
 
==테이블==
 
==테이블==
$$
+
:<math>
 
\begin{array}{c|c}
 
\begin{array}{c|c}
 
  n & C_n{}^{(\lambda )}(x) \\
 
  n & C_n{}^{(\lambda )}(x) \\
19번째 줄: 19번째 줄:
 
  5 & \frac{1}{15} \lambda  (\lambda +1) (\lambda +2) x \left(4 (\lambda +3) (\lambda +4) x^4-20 (\lambda +3) x^2+15\right) \\
 
  5 & \frac{1}{15} \lambda  (\lambda +1) (\lambda +2) x \left(4 (\lambda +3) (\lambda +4) x^4-20 (\lambda +3) x^2+15\right) \\
 
\end{array}
 
\end{array}
$$
+
</math>
  
  
27번째 줄: 27번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Berg, Christian, and Emilio Porcu. ‘From Schoenberg Coefficients to Schoenberg Functions’. arXiv:1505.05682 [math], 21 May 2015. http://arxiv.org/abs/1505.05682.
 +
* Guella, Jean C., and Valdir A. Menegatto. ‘Strictly Positive Definite Kernels on a Product of Spheres’. arXiv:1505.03695 [math], 14 May 2015. http://arxiv.org/abs/1505.03695.
 +
* Belton, Alexander, Dominique Guillot, Apoorva Khare, and Mihai Putinar. ‘Schoenberg’s Positivity Theorem in Fixed Dimension’. arXiv:1504.07674 [math], 28 April 2015. http://arxiv.org/abs/1504.07674.
 
* Guella, J. C., V. A. Menegatto, and Ana P. Peron. “An Extension of a Theorem of Schoenberg to Products of Spheres.” arXiv:1503.08174 [math], March 27, 2015. http://arxiv.org/abs/1503.08174.
 
* Guella, J. C., V. A. Menegatto, and Ana P. Peron. “An Extension of a Theorem of Schoenberg to Products of Spheres.” arXiv:1503.08174 [math], March 27, 2015. http://arxiv.org/abs/1503.08174.
  
 
[[분류:특수함수]]
 
[[분류:특수함수]]

2020년 11월 13일 (금) 05:55 기준 최신판

개요

  • 직교다항식 \(C_n^{(\lambda )}(x)\)
  • 자코비 다항식 \(P_{n}^{(\alpha\,\beta)}(x)\)의 특수한 경우

\[ C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) \]


테이블

\[ \begin{array}{c|c} n & C_n{}^{(\lambda )}(x) \\ \hline 0 & 1 \\ 1 & 2 \lambda x \\ 2 & \lambda \left(2 (\lambda +1) x^2-1\right) \\ 3 & \frac{2}{3} \lambda (\lambda +1) x \left(2 (\lambda +2) x^2-3\right) \\ 4 & \frac{1}{6} \lambda (\lambda +1) \left(4 (\lambda +2) (\lambda +3) x^4-12 (\lambda +2) x^2+3\right) \\ 5 & \frac{1}{15} \lambda (\lambda +1) (\lambda +2) x \left(4 (\lambda +3) (\lambda +4) x^4-20 (\lambda +3) x^2+15\right) \\ \end{array} \]


매스매티카 파일 및 계산리소스


관련논문

  • Berg, Christian, and Emilio Porcu. ‘From Schoenberg Coefficients to Schoenberg Functions’. arXiv:1505.05682 [math], 21 May 2015. http://arxiv.org/abs/1505.05682.
  • Guella, Jean C., and Valdir A. Menegatto. ‘Strictly Positive Definite Kernels on a Product of Spheres’. arXiv:1505.03695 [math], 14 May 2015. http://arxiv.org/abs/1505.03695.
  • Belton, Alexander, Dominique Guillot, Apoorva Khare, and Mihai Putinar. ‘Schoenberg’s Positivity Theorem in Fixed Dimension’. arXiv:1504.07674 [math], 28 April 2015. http://arxiv.org/abs/1504.07674.
  • Guella, J. C., V. A. Menegatto, and Ana P. Peron. “An Extension of a Theorem of Schoenberg to Products of Spheres.” arXiv:1503.08174 [math], March 27, 2015. http://arxiv.org/abs/1503.08174.