"코스트카 다항식 (Kostka polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0 사용자가 Kostka polynomial and its generalizations 문서를 코스트카 다항식 (Kostka polynomial) 문서로 옮겼습니다.)
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==introduction==
+
==개요==
 +
* [[코스트카 수 (Kostka number)]]의 q-버전
 
* 갈고리 공식
 
* 갈고리 공식
 
* 라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식
 
* 라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식
 +
* 대수적 조합수학의 중요한 연구대상
 +
  
  
 
==코스트카 수==
 
==코스트카 수==
* [[코스트카 수 (Kostka number)]]
+
* [[코스트카 수 (Kostka number)]] <math>K_{\lambda,\mu}</math>
* 군 <math>\mathrm{GL}_n(\mathbb{C})</math>의 기약표현 $V_{\lambda}$에서 $\mu$를 무게(weight)로 갖는 무게 공간(weight space)의 차원
+
* 군 <math>\mathrm{GL}_n(\mathbb{C})</math>의 기약표현 <math>V_{\lambda}</math>에서 <math>\mu</math>를 무게(weight)로 갖는 무게 공간(weight space)의 차원
* [[슈르 다항식(Schur polynomial)]] $s_{\lambda}(\mathbb{x})$ 을 [[단항 대칭 다항식 (monomial symmetric polynomial)]] $m_{\mu}(\mathbb{x})$의 선형결합으로 표현할 때 다음을 얻는다
+
* 코스트카 수 <math>K_{\lambda,\mu}</math>는 [[슈르 다항식(Schur polynomial)]] <math>s_{\lambda}(\mathbb{x})</math> 을 [[단항 대칭 다항식 (monomial symmetric polynomial)]] <math>m_{\mu}(\mathbb{x})</math>의 선형결합으로 표현할 때 다음을 얻는다
$$s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}m_\mu(\mathbb{x})$$
+
:<math>s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}m_\mu(\mathbb{x})</math>
 +
 
  
 
==코스트카 다항식==
 
==코스트카 다항식==
* 코스트카 다항식 $K_{\lambda,\mu}(q)$은 슈르 다항식 $s_{\lambda}(x)$과 [[홀-리틀우드(Hall-Littlewood) 대칭함수]] $P_{\mu}(x,q)$의 연결계수로서 나타난다  
+
* 코스트카 다항식 <math>K_{\lambda,\mu}(q)</math>은 슈르 다항식 <math>s_{\lambda}(x)</math>과 [[홀-리틀우드(Hall-Littlewood) 대칭함수]] <math>P_{\mu}(x;q)</math>의 연결계수로서 나타난다  
$$
+
:<math>
s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}P_\mu(\mathbb{x},q)
+
s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}(q)P_\mu(\mathbb{x};q)
$$
+
</math>
 +
* <math>K_{\lambda\mu}(1)=K_{\lambda\mu}</math>이 성립
 +
 
  
 
==라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식==
 
==라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식==
* In 1978 Lascoux and Schützenberger proved the remarkable fact that $K_{\lambda,\mu}(q)$ is a polynomial in $q$ with non-negative integer coefficients.
+
* 1978년에 라스꾸와 슈첸베르제는 <math>K_{\lambda,\mu}(q)</math>가 음이 아닌 정수 계수 다항식임을 증명
* They proved this by showing that $K_{\lambda,\mu}(q)=\sum q^{c(T)}$, where $T$ varies over all semi-standard tableaux of shape $\lambda$ and weight $\mu$ and $c(T)$ is an integer-valued function, called the charge of the tableau $T$, which is still a mysterious object in combinatorics.
+
* They proved this by showing that <math>K_{\lambda,\mu}(q)=\sum q^{c(T)}</math>, where <math>T</math> varies over all semi-standard tableaux of shape <math>\lambda</math> and weight <math>\mu</math> and <math>c(T)</math> is an integer-valued function, called the charge of the tableau <math>T</math>, which is still a mysterious object in combinatorics.
 +
 
 +
 
  
==related items==
+
==테이블==
* [[Fermionic formula and X=M=N conjecture]]
+
* <math>n\geq d</math>를 가정하면, 코스트카 다항식 <math>K_{\lambda,\mu}(\mathbb{x})</math>는 <math>n</math>에 의존하지 않고, <math>d</math>에만 의존
* [[Rigged configurations]]
 
* [[Macdonald polynomials]]
 
  
  
 +
===<math>d=1</math>===
 +
\begin{array}{c|c}
 +
\text{} & \{1\} \\
 +
\hline
 +
\{1\} & 1 \\
 +
\end{array}
  
==expositions==
+
===<math>d=2</math>===
 +
\begin{array}{c|cc}
 +
\text{} & \{2\} & \{1,1\} \\
 +
\hline
 +
\{2\} & 1 & q \\
 +
\{1,1\} & 0 & 1 \\
 +
\end{array}
 +
 
 +
===<math>d=3</math>===
 +
\begin{array}{c|ccc}
 +
\text{} & \{3\} & \{2,1\} & \{1,1,1\} \\
 +
\hline
 +
\{3\} & 1 & q & q^3 \\
 +
\{2,1\} & 0 & 1 & q^2+q \\
 +
\{1,1,1\} & 0 & 0 & 1 \\
 +
\end{array}
 +
 
 +
 
 +
===<math>d=4</math>===
 +
\begin{array}{c|cccc}
 +
\text{} & \{4\} & \{3,1\} & \{2,2\} & \{2,1,1\} & \{1,1,1,1\} \\
 +
\hline
 +
\{4\} & 1 & q & q^2 & q^3 & q^6 \\
 +
\{3,1\} & 0 & 1 & q & q^2+q & q^5+q^4+q^3 \\
 +
\{2,2\} & 0 & 0 & 1 & q & q^4+q^2 \\
 +
\{2,1,1\} & 0 & 0 & 0 & 1 & q^3+q^2+q \\
 +
\{1,1,1,1\} & 0 & 0 & 0 & 0 & 1 \\
 +
\end{array}
 +
 
 +
 
 +
===<math>d=5</math>===
 +
\begin{array}{c|ccccccc}
 +
\text{} & \{5\} & \{4,1\} & \{3,2\} & \{3,1,1\} & \{2,2,1\} & \{2,1,1,1\} & \{1,1,1,1,1\} \\
 +
\hline
 +
\{5\} & 1 & q & q^2 & q^3 & q^4 & q^6 & q^{10} \\
 +
\{4,1\} & 0 & 1 & q & q^2+q & q^3+q^2 & q^5+q^4+q^3 & q^9+q^8+q^7+q^6 \\
 +
\{3,2\} & 0 & 0 & 1 & q & q^2+q & q^4+q^3+q^2 & q^8+q^7+q^6+q^5+q^4 \\
 +
\{3,1,1\} & 0 & 0 & 0 & 1 & q & q^3+q^2+q & q^7+q^6+2 q^5+q^4+q^3 \\
 +
\{2,2,1\} & 0 & 0 & 0 & 0 & 1 & q^2+q & q^6+q^5+q^4+q^3+q^2 \\
 +
\{2,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 1 & q^4+q^3+q^2+q \\
 +
\{1,1,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 +
\end{array}
 +
 
 +
 
 +
==관련된 항목들==
 +
* [[코스트카 수 (Kostka number)]]
 +
* [[홀-리틀우드(Hall-Littlewood) 대칭함수]]
 +
 
 +
 
 +
==리뷰, 에세이, 강의노트==
 
* [http://www.aimath.org/WWN/kostka/ Generalized Kostka Polynomials]
 
* [http://www.aimath.org/WWN/kostka/ Generalized Kostka Polynomials]
 
* Yamada, Yasuhiko. 1996. “Kostka Polynomials and Crystals.” Sūrikaisekikenkyūsho Kōkyūroku (962): 86–96.
 
* Yamada, Yasuhiko. 1996. “Kostka Polynomials and Crystals.” Sūrikaisekikenkyūsho Kōkyūroku (962): 86–96.
34번째 줄: 95번째 줄:
  
  
 
+
==관련논문==
==articles==
+
* Shoji, Toshiaki. ‘Enhanced Variety of Higher Level and Kostka Functions Associated to Complex Reflection Groups’. arXiv:1507.01240 [math], 5 July 2015. http://arxiv.org/abs/1507.01240.
 
* Takeyama, Yoshihiro. “A Deformation of Affine Hecke Algebra and Integrable Stochastic Particle System.” arXiv:1407.1960 [cond-Mat, Physics:math-Ph], July 8, 2014. http://arxiv.org/abs/1407.1960.
 
* Takeyama, Yoshihiro. “A Deformation of Affine Hecke Algebra and Integrable Stochastic Particle System.” arXiv:1407.1960 [cond-Mat, Physics:math-Ph], July 8, 2014. http://arxiv.org/abs/1407.1960.
 
* Okado, Masato, Anne Schilling, and Mark Shimozono. “A Crystal to Rigged Configuration Bijection for Nonexceptional Affine Algebras.” arXiv:math/0203163, March 15, 2002. http://arxiv.org/abs/math/0203163.
 
* Okado, Masato, Anne Schilling, and Mark Shimozono. “A Crystal to Rigged Configuration Bijection for Nonexceptional Affine Algebras.” arXiv:math/0203163, March 15, 2002. http://arxiv.org/abs/math/0203163.
44번째 줄: 105번째 줄:
 
* Nakayashiki, Atsushi, and Yasuhiko Yamada. 1997. “Kostka Polynomials and Energy Functions in Solvable Lattice Models.” Selecta Mathematica. New Series 3 (4): 547–599. doi:10.1007/s000290050020.
 
* Nakayashiki, Atsushi, and Yasuhiko Yamada. 1997. “Kostka Polynomials and Energy Functions in Solvable Lattice Models.” Selecta Mathematica. New Series 3 (4): 547–599. doi:10.1007/s000290050020.
 
* Lascoux, Alain, and Marcel-Paul Schützenberger. 1978. “Sur Une Conjecture de H. O. Foulkes.” C. R. Acad. Sci. Paris Sér. A-B 286 (7): A323–A324.
 
* Lascoux, Alain, and Marcel-Paul Schützenberger. 1978. “Sur Une Conjecture de H. O. Foulkes.” C. R. Acad. Sci. Paris Sér. A-B 286 (7): A323–A324.
 +
 +
 +
[[분류:대칭다항식]]

2020년 11월 16일 (월) 05:22 기준 최신판

개요

  • 코스트카 수 (Kostka number)의 q-버전
  • 갈고리 공식
  • 라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식
  • 대수적 조합수학의 중요한 연구대상


코스트카 수

\[s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}m_\mu(\mathbb{x})\]


코스트카 다항식

\[ s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}(q)P_\mu(\mathbb{x};q) \]

  • \(K_{\lambda\mu}(1)=K_{\lambda\mu}\)이 성립


라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식

  • 1978년에 라스꾸와 슈첸베르제는 \(K_{\lambda,\mu}(q)\)가 음이 아닌 정수 계수 다항식임을 증명
  • They proved this by showing that \(K_{\lambda,\mu}(q)=\sum q^{c(T)}\), where \(T\) varies over all semi-standard tableaux of shape \(\lambda\) and weight \(\mu\) and \(c(T)\) is an integer-valued function, called the charge of the tableau \(T\), which is still a mysterious object in combinatorics.


테이블

  • \(n\geq d\)를 가정하면, 코스트카 다항식 \(K_{\lambda,\mu}(\mathbb{x})\)는 \(n\)에 의존하지 않고, \(d\)에만 의존


\(d=1\)

\begin{array}{c|c} \text{} & \{1\} \\ \hline \{1\} & 1 \\ \end{array}

\(d=2\)

\begin{array}{c|cc} \text{} & \{2\} & \{1,1\} \\ \hline \{2\} & 1 & q \\ \{1,1\} & 0 & 1 \\ \end{array}

\(d=3\)

\begin{array}{c|ccc} \text{} & \{3\} & \{2,1\} & \{1,1,1\} \\ \hline \{3\} & 1 & q & q^3 \\ \{2,1\} & 0 & 1 & q^2+q \\ \{1,1,1\} & 0 & 0 & 1 \\ \end{array}


\(d=4\)

\begin{array}{c|cccc} \text{} & \{4\} & \{3,1\} & \{2,2\} & \{2,1,1\} & \{1,1,1,1\} \\ \hline \{4\} & 1 & q & q^2 & q^3 & q^6 \\ \{3,1\} & 0 & 1 & q & q^2+q & q^5+q^4+q^3 \\ \{2,2\} & 0 & 0 & 1 & q & q^4+q^2 \\ \{2,1,1\} & 0 & 0 & 0 & 1 & q^3+q^2+q \\ \{1,1,1,1\} & 0 & 0 & 0 & 0 & 1 \\ \end{array}


\(d=5\)

\begin{array}{c|ccccccc} \text{} & \{5\} & \{4,1\} & \{3,2\} & \{3,1,1\} & \{2,2,1\} & \{2,1,1,1\} & \{1,1,1,1,1\} \\ \hline \{5\} & 1 & q & q^2 & q^3 & q^4 & q^6 & q^{10} \\ \{4,1\} & 0 & 1 & q & q^2+q & q^3+q^2 & q^5+q^4+q^3 & q^9+q^8+q^7+q^6 \\ \{3,2\} & 0 & 0 & 1 & q & q^2+q & q^4+q^3+q^2 & q^8+q^7+q^6+q^5+q^4 \\ \{3,1,1\} & 0 & 0 & 0 & 1 & q & q^3+q^2+q & q^7+q^6+2 q^5+q^4+q^3 \\ \{2,2,1\} & 0 & 0 & 0 & 0 & 1 & q^2+q & q^6+q^5+q^4+q^3+q^2 \\ \{2,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 1 & q^4+q^3+q^2+q \\ \{1,1,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array}


관련된 항목들


리뷰, 에세이, 강의노트


관련논문

  • Shoji, Toshiaki. ‘Enhanced Variety of Higher Level and Kostka Functions Associated to Complex Reflection Groups’. arXiv:1507.01240 [math], 5 July 2015. http://arxiv.org/abs/1507.01240.
  • Takeyama, Yoshihiro. “A Deformation of Affine Hecke Algebra and Integrable Stochastic Particle System.” arXiv:1407.1960 [cond-Mat, Physics:math-Ph], July 8, 2014. http://arxiv.org/abs/1407.1960.
  • Okado, Masato, Anne Schilling, and Mark Shimozono. “A Crystal to Rigged Configuration Bijection for Nonexceptional Affine Algebras.” arXiv:math/0203163, March 15, 2002. http://arxiv.org/abs/math/0203163.
  • Schilling, Anne, and Mark Shimozono. 2001. “Fermionic Formulas for Level-Restricted Generalized Kostka Polynomials and Coset Branching Functions.” Communications in Mathematical Physics 220 (1): 105–164. doi:10.1007/s002200100443.
  • Kirillov, Anatol N., Anne Schilling, and Mark Shimozono. 1999. “Various Representations of the Generalized Kostka Polynomials.” Séminaire Lotharingien de Combinatoire 42: Art. B42j, 19 pp. (electronic). http://www.emis.de/journals/SLC/wpapers/s42schil.pdf
  • Feigin, B., and S. Loktev. 1999. “On Generalized Kostka Polynomials and the Quantum Verlinde Rule.” In Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, 194:61–79. Amer. Math. Soc. Transl. Ser. 2. Providence, RI: Amer. Math. Soc.
  • Kirillov, A. N. 1988. “On the Kostka-Green-Foulkes Polynomials and Clebsch-Gordan Numbers.” Journal of Geometry and Physics 5 (3): 365–389. doi:10.1016/0393-0440(88)90030-7.
  • Nakayashiki, Atsushi, and Yasuhiko Yamada. 1997. “Kostka Polynomials and Energy Functions in Solvable Lattice Models.” Selecta Mathematica. New Series 3 (4): 547–599. doi:10.1007/s000290050020.
  • Lascoux, Alain, and Marcel-Paul Schützenberger. 1978. “Sur Une Conjecture de H. O. Foulkes.” C. R. Acad. Sci. Paris Sér. A-B 286 (7): A323–A324.