"타원 감마 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 
* [[Q-감마함수]]의 일반화
 
* [[Q-감마함수]]의 일반화
$$
+
:<math>
 
\Gamma (z;p,q) = \prod_{m=0}^\infty \prod_{n=0}^\infty
 
\Gamma (z;p,q) = \prod_{m=0}^\infty \prod_{n=0}^\infty
 
\frac{1-p^{m+1}q^{n+1}/z}{1-p^m q^n z}
 
\frac{1-p^{m+1}q^{n+1}/z}{1-p^m q^n z}
$$
+
</math>
  
  
15번째 줄: 15번째 줄:
  
 
==관련논문==
 
==관련논문==
* Sadjang, P. Njionou. ‘On the $(p,q)$-Gamma and the $(p,q)$-Beta Functions’. arXiv:1506.07394 [math-Ph], 22 June 2015. http://arxiv.org/abs/1506.07394.
+
* Sadjang, P. Njionou. ‘On the <math>(p,q)</math>-Gamma and the <math>(p,q)</math>-Beta Functions’. arXiv:1506.07394 [math-Ph], 22 June 2015. http://arxiv.org/abs/1506.07394.
* Krasniqi, Valmir, and Faton Merovci. “Some Completely Monotonic Properties for the $(p,q )$-Gamma Function.” arXiv:1407.4231 [math], July 16, 2014. http://arxiv.org/abs/1407.4231.
+
* Krasniqi, Valmir, and Faton Merovci. “Some Completely Monotonic Properties for the <math>(p,q )</math>-Gamma Function.” arXiv:1407.4231 [math], July 16, 2014. http://arxiv.org/abs/1407.4231.
 
* Felder, Giovanni, Andre Henriques, Carlo A. Rossi, and Chenchang Zhu. “A Gerbe for the Elliptic Gamma Function.” Duke Mathematical Journal 141, no. 1 (January 2008): 1–74. doi:10.1215/S0012-7094-08-14111-0.
 
* Felder, Giovanni, Andre Henriques, Carlo A. Rossi, and Chenchang Zhu. “A Gerbe for the Elliptic Gamma Function.” Duke Mathematical Journal 141, no. 1 (January 2008): 1–74. doi:10.1215/S0012-7094-08-14111-0.
 
* Felder, G., and A. Varchenko. “Multiplication Formulas for the Elliptic Gamma Function.” arXiv:math/0212155, December 11, 2002. http://arxiv.org/abs/math/0212155.
 
* Felder, G., and A. Varchenko. “Multiplication Formulas for the Elliptic Gamma Function.” arXiv:math/0212155, December 11, 2002. http://arxiv.org/abs/math/0212155.
23번째 줄: 23번째 줄:
  
 
[[분류:특수함수]]
 
[[분류:특수함수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q615862 Q615862]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 02:18 기준 최신판

개요

\[ \Gamma (z;p,q) = \prod_{m=0}^\infty \prod_{n=0}^\infty \frac{1-p^{m+1}q^{n+1}/z}{1-p^m q^n z} \]


매스매티카 파일 및 계산 리소스


사전 형태의 자료

관련논문

  • Sadjang, P. Njionou. ‘On the \((p,q)\)-Gamma and the \((p,q)\)-Beta Functions’. arXiv:1506.07394 [math-Ph], 22 June 2015. http://arxiv.org/abs/1506.07394.
  • Krasniqi, Valmir, and Faton Merovci. “Some Completely Monotonic Properties for the \((p,q )\)-Gamma Function.” arXiv:1407.4231 [math], July 16, 2014. http://arxiv.org/abs/1407.4231.
  • Felder, Giovanni, Andre Henriques, Carlo A. Rossi, and Chenchang Zhu. “A Gerbe for the Elliptic Gamma Function.” Duke Mathematical Journal 141, no. 1 (January 2008): 1–74. doi:10.1215/S0012-7094-08-14111-0.
  • Felder, G., and A. Varchenko. “Multiplication Formulas for the Elliptic Gamma Function.” arXiv:math/0212155, December 11, 2002. http://arxiv.org/abs/math/0212155.
  • Felder, Giovanni, and Alexander Varchenko. “The Elliptic Gamma Function and SL(3,Z) X Z^3.” Advances in Mathematics 156, no. 1 (December 2000): 44–76. doi:10.1006/aima.2000.1951.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]