"월리스 곱 (Wallis product formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
* 1655년, 영국 수학자 월리스([http://en.wikipedia.org/wiki/John_Wallis John Wallis])는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다
+
* 1655년, 영국 수학자 월리스([http://en.wikipedia.org/wiki/John_Wallis John Wallis])는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다
 
:<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
 
:<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
$$\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}$$
+
:<math>\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math>
 
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]할때 이 월리스의 공식을 사용 :<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
 
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]할때 이 월리스의 공식을 사용 :<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
 
* 이는 다음을 말해준다
 
* 이는 다음을 말해준다
10번째 줄: 10번째 줄:
  
 
==증명==
 
==증명==
* 다음과 같이 수열 $\{a_n\}$을 정의하자 :<math>a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}</math> 여기서 $B(x,y)$는 [[오일러 베타적분(베타함수)|오일러 베타적분]].
+
* 다음과 같이 수열 <math>\{a_n\}</math>을 정의하자 :<math>a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}</math> 여기서 <math>B(x,y)</math>는 [[오일러 베타적분(베타함수)|오일러 베타적분]].
* 수열 $\{a_n\}$은 다음 점화식을 만족시킨다 $$a_0=\pi,a_1=2,$$ $$a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}$$
+
* 수열 <math>\{a_n\}</math>은 다음 점화식을 만족시킨다 :<math>a_0=\pi,a_1=2,</math> :<math>a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}</math>
 
;보조정리1
 
;보조정리1
$$\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}$$
+
:<math>\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}</math>
  
 
;증명
 
;증명
 
\ref{rec}로부터 다음을 얻는다  
 
\ref{rec}로부터 다음을 얻는다  
$$\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}$$ 으로부터
+
:<math>\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}</math> 으로부터
$$\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}$$을 얻는다.
+
:<math>\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}</math>을 얻는다.
 
한편,  
 
한편,  
$$\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}$$
+
:<math>\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}</math>
 
로부터 \ref{prod}을 얻는다. ■  
 
로부터 \ref{prod}을 얻는다. ■  
  
 
;보조정리2
 
;보조정리2
$$\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}$$
+
:<math>\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}</math>
  
 
;증명
 
;증명
$a_{n}$은 단조감소수열이므로, 다음 부등식이 성립한다
+
<math>a_{n}</math>은 단조감소수열이므로, 다음 부등식이 성립한다
$$1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}$$
+
:<math>1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}</math>
 
우변에서는 \ref{rec}이 사용되었다.  
 
우변에서는 \ref{rec}이 사용되었다.  
따라서 [[샌드위치 정리]]에 의해 $$\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1$$ ■  
+
따라서 [[샌드위치 정리]]에 의해 :<math>\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1</math> ■  
  
  
37번째 줄: 37번째 줄:
  
 
==사인함수의 무한곱 표현을 이용한 증명==
 
==사인함수의 무한곱 표현을 이용한 증명==
* 다음 사인함수의 무한곱 표현에서 $x=1/2$ 일 때, 월리스 곱을 얻는다
+
* 다음 사인함수의 무한곱 표현에서 <math>x=1/2</math> 일 때, 월리스 곱을 얻는다
 
:<math>\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}</math>
 
:<math>\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}</math>
 
* [[삼각함수의 무한곱 표현]] 항목 참조
 
* [[삼각함수의 무한곱 표현]] 항목 참조
52번째 줄: 52번째 줄:
 
* 뉴턴(1643년 1월-1727년 3월)
 
* 뉴턴(1643년 1월-1727년 3월)
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
69번째 줄: 69번째 줄:
 
* [[삼각함수의 적분]]
 
* [[삼각함수의 적분]]
  
 
+
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxQ1pCSTA2YzVhWG8/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxQ1pCSTA2YzVhWG8/edit
 
+
  
 
==사전형태의 자료==
 
==사전형태의 자료==
79번째 줄: 79번째 줄:
 
* http://www22.wolframalpha.com/input/?i=wallis+product
 
* http://www22.wolframalpha.com/input/?i=wallis+product
  
 
+
  
 
+
  
 
==블로그==
 
==블로그==
89번째 줄: 89번째 줄:
  
 
==관련논문==
 
==관련논문==
* Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for $\pi$.” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.
+
* Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for <math>\pi</math>.” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.
  
  
 
[[분류:원주율]]
 
[[분류:원주율]]
 
[[분류:미적분학]]
 
[[분류:미적분학]]
 +
 +
== 노트 ==
 +
 +
===말뭉치===
 +
# Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series foris the approximation after takingterms.<ref name="ref_277b1850">[https://en.wikipedia.org/wiki/Wallis_product Wallis product]</ref>
 +
# The product, as n goes to infinity, is known as the Wallis product, and it is amazingly equal to π/2 ≈ 1.571.<ref name="ref_22afbcdd">[https://mindyourdecisions.com/blog/2016/10/12/the-wallis-product-formula-for-pi-and-its-proof/ The Wallis Product Formula For Pi And Its Proof – Mind Your Decisions]</ref>
 +
# There are some interesting details in the historical calculation of what is now called the Wallis product.<ref name="ref_22afbcdd" />
 +
# The results involved π/4 as well as the fractions involved in the Wallis product, and Wallis could re-write the expressions to find π in terms of a fractional product.<ref name="ref_22afbcdd" />
 +
# We can derive the Wallis product formula from these integrals.<ref name="ref_22afbcdd" />
 +
# I know how the value for the Wallis product was found, but none of these techniques seem to work on this seemingly related product.<ref name="ref_0ee8acf8">[https://math.stackexchange.com/questions/698176/infinite-product-related-to-the-wallis-product Infinite product related to the Wallis product]</ref>
 +
# Do you know or can you provide simple proofs of the above equation which do not use the Wallis product?<ref name="ref_44bab671">[https://mathoverflow.net/questions/257440/accelerated-wallis-product Accelerated Wallis' product]</ref>
 +
# I would be very curious to see if anyone has written on seeing the Wallis product this way in terms of sphere volumes before.<ref name="ref_485b18fb">[https://www.3blue1brown.com/sridhars-corner/2018/5/12/another-simple-geometric-proof-of-the-wallis-product Another Simple Geometric Proof of the Wallis Product — 3Blue1Brown]</ref>
 +
# Last week my cousin told me Wallis' product was quite his favorite formula in mathematics.<ref name="ref_1097d418">[https://www.hpmuseum.org/forum/thread-14476.html Wallis' product exploration]</ref>
 +
# I remembered the thread opened on this forum about PI approximations (like 355 / 113), and we decided to program Wallis product on Free42 while having a coffee...<ref name="ref_1097d418" />
 +
# In the previous post I mentioned about how to demonstrate the Wallis product for pi by starting from the powered sine integration.<ref name="ref_5740b247">[https://albertusk95.github.io/posts/2020/05/wallis-product-proof-with-euler-sine-infinite-product/ Proof of Wallis Product for Pi with Euler’s Infinite Product for Sine]</ref>
 +
# This time, we’re gonna see how to derive the Wallis product with Euler’s infinite product representation for sine function.<ref name="ref_5740b247" />
 +
# As a refresher, here’s the Wallis product for pi that we are trying to prove.<ref name="ref_5740b247" />
 +
===소스===
 +
<references />
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1501324 Q1501324]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'wallis'}, {'LEMMA': 'product'}]
 +
* [{'LOWER': 'wallis'}, {'LOWER': "'"}, {'LEMMA': 'product'}]

2021년 2월 26일 (금) 00:38 기준 최신판

개요

  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다

\[\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\] \[\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\]

\[\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\]


증명

  • 다음과 같이 수열 \(\{a_n\}\)을 정의하자 \[a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}\] 여기서 \(B(x,y)\)는 오일러 베타적분.
  • 수열 \(\{a_n\}\)은 다음 점화식을 만족시킨다 \[a_0=\pi,a_1=2,\] \[a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}\]
보조정리1

\[\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}\]

증명

\ref{rec}로부터 다음을 얻는다 \[\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}\] 으로부터 \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\]을 얻는다. 한편, \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}\] 로부터 \ref{prod}을 얻는다. ■

보조정리2

\[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}\]

증명

\(a_{n}\)은 단조감소수열이므로, 다음 부등식이 성립한다 \[1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}\] 우변에서는 \ref{rec}이 사용되었다. 따라서 샌드위치 정리에 의해 \[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1\] ■


보조정리1과 보조정리2로부터 월리스 곱을 얻는다 ■


사인함수의 무한곱 표현을 이용한 증명

  • 다음 사인함수의 무한곱 표현에서 \(x=1/2\) 일 때, 월리스 곱을 얻는다

\[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]


역사

  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트(1596년 3월-1650년 2월)
  • 뉴턴(1643년 1월-1727년 3월)



메모

관련된 항목들


매스매티카 파일 및 계산 리소스


사전형태의 자료



블로그


관련논문

  • Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for \(\pi\).” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.

노트

말뭉치

  1. Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series foris the approximation after takingterms.[1]
  2. The product, as n goes to infinity, is known as the Wallis product, and it is amazingly equal to π/2 ≈ 1.571.[2]
  3. There are some interesting details in the historical calculation of what is now called the Wallis product.[2]
  4. The results involved π/4 as well as the fractions involved in the Wallis product, and Wallis could re-write the expressions to find π in terms of a fractional product.[2]
  5. We can derive the Wallis product formula from these integrals.[2]
  6. I know how the value for the Wallis product was found, but none of these techniques seem to work on this seemingly related product.[3]
  7. Do you know or can you provide simple proofs of the above equation which do not use the Wallis product?[4]
  8. I would be very curious to see if anyone has written on seeing the Wallis product this way in terms of sphere volumes before.[5]
  9. Last week my cousin told me Wallis' product was quite his favorite formula in mathematics.[6]
  10. I remembered the thread opened on this forum about PI approximations (like 355 / 113), and we decided to program Wallis product on Free42 while having a coffee...[6]
  11. In the previous post I mentioned about how to demonstrate the Wallis product for pi by starting from the powered sine integration.[7]
  12. This time, we’re gonna see how to derive the Wallis product with Euler’s infinite product representation for sine function.[7]
  13. As a refresher, here’s the Wallis product for pi that we are trying to prove.[7]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'wallis'}, {'LEMMA': 'product'}]
  • [{'LOWER': 'wallis'}, {'LOWER': "'"}, {'LEMMA': 'product'}]