"초타원 시그마 함수(hyperelliptic sigma functions)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
4번째 줄: 4번째 줄:
 
* [http://www.icms.org.uk/workshops/sigma The higher-genus sigma function and applications]
 
* [http://www.icms.org.uk/workshops/sigma The higher-genus sigma function and applications]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
13번째 줄: 13번째 줄:
 
* [[소모스 수열(Somos sequence)]]
 
* [[소모스 수열(Somos sequence)]]
  
 
+
  
 
==리뷰논문과 에세이==
 
==리뷰논문과 에세이==
20번째 줄: 20번째 줄:
 
* Buchstaber, Victor, Victor Enolskii, and Dmitri Leykin. “Hyperelliptic Kleinian Functions and Applications.” arXiv:solv-int/9603005, March 16, 1996. http://arxiv.org/abs/solv-int/9603005.
 
* Buchstaber, Victor, Victor Enolskii, and Dmitri Leykin. “Hyperelliptic Kleinian Functions and Applications.” arXiv:solv-int/9603005, March 16, 1996. http://arxiv.org/abs/solv-int/9603005.
  
 
+
  
 
==관련논문==
 
==관련논문==
 
* Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
 
* Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
*  Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” <em>1008.0509</em> (August 3). http://arxiv.org/abs/1008.0509 .<br>
+
*  Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” <em>1008.0509</em> (August 3). http://arxiv.org/abs/1008.0509 .
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216].
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216].
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140.
+
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019
 
* Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” <em>math/0501162</em> (January 11). http://arxiv.org/abs/math/0501162 .
 
* Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” <em>math/0501162</em> (January 11). http://arxiv.org/abs/math/0501162 .
 
* Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:[http://dx.doi.org/10.1016/S0375-9601%2802%2900784-3 16/S0375-9601(02)00784-3]
 
* Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:[http://dx.doi.org/10.1016/S0375-9601%2802%2900784-3 16/S0375-9601(02)00784-3]
32번째 줄: 32번째 줄:
 
* Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001.
 
* Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001.
  
==링크==
 
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
+
[[분류:특수함수]]

2020년 12월 28일 (월) 02:58 기준 최신판

메모



관련된 항목들


리뷰논문과 에세이


관련논문

  • Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
  • Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” 1008.0509 (August 3). http://arxiv.org/abs/1008.0509 .
  • Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216.
  • Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019
  • Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” math/0501162 (January 11). http://arxiv.org/abs/math/0501162 .
  • Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:16/S0375-9601(02)00784-3
  • Ônishi, Yoshihiro. “Determinant Expressions for Hyperelliptic Functions (with an Appendix by Shigeki Matsutani).” arXiv:math/0105189, May 23, 2001. http://arxiv.org/abs/math/0105189.
  • Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:10.1088/0305-4470/34/22/312. http://arxiv.org/abs/nlin/0007001.