"에르하르트 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
6번째 줄: 6번째 줄:
  
 
==관련논문==
 
==관련논문==
* Takayuki Hibi, Akiyoshi Tsuchiya, Flat $δ$-vectors and their Ehrhart polynomials, arXiv:1604.02505 [math.CO], April 09 2016, http://arxiv.org/abs/1604.02505
+
* Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, arXiv:math/0312031 [math.CO], December 01 2003, http://arxiv.org/abs/math/0312031
 +
* Yusuke Suyama, Ehrhart polynomials of 3-dimensional simple integral convex polytopes, arXiv:1605.04694 [math.CO], May 16 2016, http://arxiv.org/abs/1605.04694
 +
* Takayuki Hibi, Akihiro Higashitani, Akiyoshi Tsuchiya, Koutarou Yoshida, Ehrhart polynomials with negative coefficients, arXiv:1506.00467 [math.CO], June 01 2015, http://arxiv.org/abs/1506.00467
 +
* Takayuki Hibi, Akiyoshi Tsuchiya, Flat <math>δ</math>-vectors and their Ehrhart polynomials, arXiv:1604.02505 [math.CO], April 09 2016, http://arxiv.org/abs/1604.02505
 
* Velleda Baldoni, Nicole Berline, Jesús A. De Loera, Matthias Köppe, Michèle Vergne, Three Ehrhart Quasi-polynomials, arXiv:1410.8632[math.CO], October 31 2014, http://arxiv.org/abs/1410.8632v2
 
* Velleda Baldoni, Nicole Berline, Jesús A. De Loera, Matthias Köppe, Michèle Vergne, Three Ehrhart Quasi-polynomials, arXiv:1410.8632[math.CO], October 31 2014, http://arxiv.org/abs/1410.8632v2
 
* Eugen J. Ionascu, Ehrhart polynomial for lattice squares, cubes and hypercubes, http://arxiv.org/abs/1508.03643v2
 
* Eugen J. Ionascu, Ehrhart polynomial for lattice squares, cubes and hypercubes, http://arxiv.org/abs/1508.03643v2
* Benjamin Braun, Liam Solus, Shellability, Ehrhart Theory, and $r$-stable Hypersimplices, http://arxiv.org/abs/1408.4713v3
+
* Benjamin Braun, Liam Solus, Shellability, Ehrhart Theory, and <math>r</math>-stable Hypersimplices, http://arxiv.org/abs/1408.4713v3
 
* Breuer, Felix. “Ehrhart F*-Coefficients of Polytopal Complexes Are Non-Negative Integers.” arXiv:1202.2652 [Math], February 13, 2012. http://arxiv.org/abs/1202.2652.
 
* Breuer, Felix. “Ehrhart F*-Coefficients of Polytopal Complexes Are Non-Negative Integers.” arXiv:1202.2652 [Math], February 13, 2012. http://arxiv.org/abs/1202.2652.

2020년 11월 16일 (월) 04:23 기준 최신판

메모

관련논문

  • Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, arXiv:math/0312031 [math.CO], December 01 2003, http://arxiv.org/abs/math/0312031
  • Yusuke Suyama, Ehrhart polynomials of 3-dimensional simple integral convex polytopes, arXiv:1605.04694 [math.CO], May 16 2016, http://arxiv.org/abs/1605.04694
  • Takayuki Hibi, Akihiro Higashitani, Akiyoshi Tsuchiya, Koutarou Yoshida, Ehrhart polynomials with negative coefficients, arXiv:1506.00467 [math.CO], June 01 2015, http://arxiv.org/abs/1506.00467
  • Takayuki Hibi, Akiyoshi Tsuchiya, Flat \(δ\)-vectors and their Ehrhart polynomials, arXiv:1604.02505 [math.CO], April 09 2016, http://arxiv.org/abs/1604.02505
  • Velleda Baldoni, Nicole Berline, Jesús A. De Loera, Matthias Köppe, Michèle Vergne, Three Ehrhart Quasi-polynomials, arXiv:1410.8632[math.CO], October 31 2014, http://arxiv.org/abs/1410.8632v2
  • Eugen J. Ionascu, Ehrhart polynomial for lattice squares, cubes and hypercubes, http://arxiv.org/abs/1508.03643v2
  • Benjamin Braun, Liam Solus, Shellability, Ehrhart Theory, and \(r\)-stable Hypersimplices, http://arxiv.org/abs/1408.4713v3
  • Breuer, Felix. “Ehrhart F*-Coefficients of Polytopal Complexes Are Non-Negative Integers.” arXiv:1202.2652 [Math], February 13, 2012. http://arxiv.org/abs/1202.2652.