"Kohnen-Waldspurger formula"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * In the 1980s, Waldspurger [205], and Kohnen and Zagier [135, 136, 137] established that certain half-integral weight modular forms serve as generating functions of ...)
 
 
(다른 사용자 한 명의 중간 판 21개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 +
* study central values and derivatives of weight 2 modular L-functions
 +
* let <math>g(z)</math> be a Kohnen newform
 +
* There is a unique newform, say <math>f(z)\in S^{\text{new}}_{2k}(N)</math>, associated to <math>g(z)</math> under Shimura's correspondence.
 +
* The coefficients of <math>g(z)</math> determine the central critical values of many of the quadratic twists <math>L(f, \chi_D, s)</math>
 +
 +
 +
==formula==
 +
*  There is a modular form <math>g(z)=\sum b_{E}(n)q^n</math> such that if <math>\epsilon()=1</math>,
 +
:<math>L(E(\Delta),1)=\alpha(\cdots)b_{E}(\Delta)^{2}</math>
 +
 +
 +
==history==
 
* In the 1980s, Waldspurger [205], and Kohnen and Zagier [135, 136, 137] established that certain half-integral weight modular forms serve as generating functions of a new type.  
 
* In the 1980s, Waldspurger [205], and Kohnen and Zagier [135, 136, 137] established that certain half-integral weight modular forms serve as generating functions of a new type.  
 
* Using the Shimura correspondence [192], they proved that certain coefficients of half-integral weight cusp forms essentially are square-roots of central values of quadratic twists of modular L-functions.
 
* Using the Shimura correspondence [192], they proved that certain coefficients of half-integral weight cusp forms essentially are square-roots of central values of quadratic twists of modular L-functions.
 +
* Ono and Bruinier [67] have generalized this theorem of Waldspurger and Kohnen to prove that the Fourier coefficients of weight 1/2 harmonic Maass forms encode the vanishing and nonvanishing of both the central values and derivatives of quadratic twists of weight 2 modular L-functions.
 +
** [[Mock modular periods and L-functions]]
 +
 +
 +
==related items==
 +
* [[Shimura correspondence]]
 +
* [[Gross-Zagier formula]]
 +
  
 +
==expositions==
 +
* RAMAKRISHNAN, B. "MODULAR FORMS OF HALF-INTEGRAL WEIGHT." THE MATHEMATICS STUDENT: 101. http://indianmathsociety.org.in/mathstudent2012.pdf#page=104
 +
* [[Unearthing the visions of a master: harmonic Maass forms and number theory]]
 +
** chapter 15
  
  
 
==articles==
 
==articles==
 +
* Nicolás Sirolli, Gonzalo Tornaría, An explicit Waldspurger formula for Hilbert modular forms, http://arxiv.org/abs/1603.03753v1
 +
* Sergey Lysenko, Geometric Waldspurger periods II, http://arxiv.org/abs/1308.6531v2
 +
* Wen, Jun. “Orthogonal Periods and Central Values of Rankin-Selberg L-Functions of <math>GL_3 {\times} GL_2</math>.” arXiv:1512.09222 [math], December 31, 2015. http://arxiv.org/abs/1512.09222.
 +
* Liu, Yifeng, Shouwu Zhang, and Wei Zhang. “On <math>p</math>-Adic Waldspurger Formula.” arXiv:1511.08172 [math], November 25, 2015. http://arxiv.org/abs/1511.08172.
 +
* Cooper, Ian A., Patrick W. Morris, and Nina C. Snaith. “Beyond the Excised Ensemble: Modelling Elliptic Curve L-Functions with Random Matrices.” arXiv:1511.05805 [math-Ph], November 18, 2015. http://arxiv.org/abs/1511.05805.
 +
* Wen, Jun. “Bhargava’s Composition Law and Waldspurger’s Central Value Theorem.” arXiv:1510.07334 [math], October 25, 2015. http://arxiv.org/abs/1510.07334.
 +
* Schwagenscheidt, Markus. ‘Nonvanishing and Central Critical Values of Twisted <math>L</math>-Functions of Cusp Forms on Average’. arXiv:1502.02492 [math], 9 February 2015. http://arxiv.org/abs/1502.02492.
 +
* [67] Bruinier, Jan H., and Ken Ono. 2007. “Heegner Divisors, <math>L</math>-Functions and Harmonic Weak Maass Forms.” arXiv:0710.0283 [math] (October 1). http://arxiv.org/abs/0710.0283., Annals of Mathematics
 
* [135] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982) 32-72.  
 
* [135] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982) 32-72.  
 
* [136] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), 237-268. http://www.springerlink.com/content/p52527460724p36m/
 
* [136] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), 237-268. http://www.springerlink.com/content/p52527460724p36m/
 
* [137] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, pages 175–198.
 
* [137] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, pages 175–198.
 
* [205] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, pages 375–484.
 
* [205] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, pages 375–484.
 +
[[분류:theta]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 00:30 기준 최신판

introduction

  • study central values and derivatives of weight 2 modular L-functions
  • let \(g(z)\) be a Kohnen newform
  • There is a unique newform, say \(f(z)\in S^{\text{new}}_{2k}(N)\), associated to \(g(z)\) under Shimura's correspondence.
  • The coefficients of \(g(z)\) determine the central critical values of many of the quadratic twists \(L(f, \chi_D, s)\)


formula

  • There is a modular form \(g(z)=\sum b_{E}(n)q^n\) such that if \(\epsilon()=1\),

\[L(E(\Delta),1)=\alpha(\cdots)b_{E}(\Delta)^{2}\]


history

  • In the 1980s, Waldspurger [205], and Kohnen and Zagier [135, 136, 137] established that certain half-integral weight modular forms serve as generating functions of a new type.
  • Using the Shimura correspondence [192], they proved that certain coefficients of half-integral weight cusp forms essentially are square-roots of central values of quadratic twists of modular L-functions.
  • Ono and Bruinier [67] have generalized this theorem of Waldspurger and Kohnen to prove that the Fourier coefficients of weight 1/2 harmonic Maass forms encode the vanishing and nonvanishing of both the central values and derivatives of quadratic twists of weight 2 modular L-functions.


related items


expositions


articles

  • Nicolás Sirolli, Gonzalo Tornaría, An explicit Waldspurger formula for Hilbert modular forms, http://arxiv.org/abs/1603.03753v1
  • Sergey Lysenko, Geometric Waldspurger periods II, http://arxiv.org/abs/1308.6531v2
  • Wen, Jun. “Orthogonal Periods and Central Values of Rankin-Selberg L-Functions of \(GL_3 {\times} GL_2\).” arXiv:1512.09222 [math], December 31, 2015. http://arxiv.org/abs/1512.09222.
  • Liu, Yifeng, Shouwu Zhang, and Wei Zhang. “On \(p\)-Adic Waldspurger Formula.” arXiv:1511.08172 [math], November 25, 2015. http://arxiv.org/abs/1511.08172.
  • Cooper, Ian A., Patrick W. Morris, and Nina C. Snaith. “Beyond the Excised Ensemble: Modelling Elliptic Curve L-Functions with Random Matrices.” arXiv:1511.05805 [math-Ph], November 18, 2015. http://arxiv.org/abs/1511.05805.
  • Wen, Jun. “Bhargava’s Composition Law and Waldspurger’s Central Value Theorem.” arXiv:1510.07334 [math], October 25, 2015. http://arxiv.org/abs/1510.07334.
  • Schwagenscheidt, Markus. ‘Nonvanishing and Central Critical Values of Twisted \(L\)-Functions of Cusp Forms on Average’. arXiv:1502.02492 [math], 9 February 2015. http://arxiv.org/abs/1502.02492.
  • [67] Bruinier, Jan H., and Ken Ono. 2007. “Heegner Divisors, \(L\)-Functions and Harmonic Weak Maass Forms.” arXiv:0710.0283 [math] (October 1). http://arxiv.org/abs/0710.0283., Annals of Mathematics
  • [135] W. Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982) 32-72.
  • [136] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), 237-268. http://www.springerlink.com/content/p52527460724p36m/
  • [137] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, pages 175–198.
  • [205] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, pages 375–484.