"Characters of superconformal algebra and mock theta functions"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) (→메타데이터) |
||
(사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
− | == | + | ==<math>\mathcal{N}=4</math> superconformal algebra== |
===generators and relations=== | ===generators and relations=== | ||
* [[Virasoro algebra]] | * [[Virasoro algebra]] | ||
− | + | :<math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math> | |
* [[Affine sl(2)]] | * [[Affine sl(2)]] | ||
− | + | :<math>[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}</math> | |
− | + | :<math>[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}</math> | |
* fermionic operators | * fermionic operators | ||
− | + | :<math> | |
G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} | G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} | ||
− | + | </math> | |
− | === | + | ===<math>c=6k</math> with <math>k=1</math> case=== |
− | * non-BPS characters : | + | * non-BPS characters : <math>h>k/4,\ell=1/2</math> |
− | + | :<math> | |
− | \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0} | + | \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0}=q^{h-3/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}=q^{n-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} |
− | + | </math> | |
− | * BPS characters : | + | * BPS characters : <math>h=1/4,\ell=0,1/2</math> |
− | + | :<math> | |
\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ | \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ | ||
− | \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2} | + | \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2}+2\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=q^{-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} |
− | + | </math> | |
− | where | + | where <math>\mu(z;\tau)</math> is the [[Appell-Lerch sums]] which is a holomorphic part of a mock modular form |
− | * this is related to [[Mathieu moonshine]] and the elliptic genus of K3 surface | + | * this is related to [[Mathieu moonshine]] and the [[elliptic genus]] of K3 surface |
− | === | + | ===<math>k\geq 2</math> case=== |
− | * this is related to [[Umbral moonshine]] and elliptic genus of hyperKahler manifolds of complex dimension | + | * this is related to [[Umbral moonshine]] and elliptic genus of hyperKahler manifolds of complex dimension <math>2k</math> |
37번째 줄: | 37번째 줄: | ||
==history== | ==history== | ||
− | * 1986 Eguchi-Taoimina | + | * 1986 Eguchi-Taoimina <math>\mathcal{N}=4</math> superconformal algebra |
− | * 1990 Odake, | + | * 1990 Odake, <math>\mathcal{N}=2</math> superconformal algebra |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
67번째 줄: | 67번째 줄: | ||
* Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:[http://dx.doi.org/10.1016/0550-3213(89)90454-9 10.1016/0550-3213(89)90454-9]. | * Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:[http://dx.doi.org/10.1016/0550-3213(89)90454-9 10.1016/0550-3213(89)90454-9]. | ||
* Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797 | * Yutaka Matsuo [http://ptp.ipap.jp/link?PTP/77/793/ Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra] , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797 | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q6956294 Q6956294] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'n'}, {'LOWER': '='}, {'LOWER': '2'}, {'LOWER': 'superconformal'}, {'LEMMA': 'algebra'}] |
2021년 2월 17일 (수) 02:14 기준 최신판
introduction
\(\mathcal{N}=4\) superconformal algebra
generators and relations
\[[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\]
\[[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}\] \[[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}\]
- fermionic operators
\[ G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} \]
\(c=6k\) with \(k=1\) case
- non-BPS characters \[h>k/4,\ell=1/2\]
\[ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0}=q^{h-3/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}=q^{n-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \]
- BPS characters \[h=1/4,\ell=0,1/2\]
\[ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2}+2\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=q^{-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \] where \(\mu(z;\tau)\) is the Appell-Lerch sums which is a holomorphic part of a mock modular form
- this is related to Mathieu moonshine and the elliptic genus of K3 surface
\(k\geq 2\) case
- this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension \(2k\)
history
- 1986 Eguchi-Taoimina \(\mathcal{N}=4\) superconformal algebra
- 1990 Odake, \(\mathcal{N}=2\) superconformal algebra
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
- http://en.wikipedia.org/wiki/N_%3D_2_superconformal_algebra
- http://en.wikipedia.org/wiki/Super_Virasoro_algebra
- http://www.scholarpedia.org/
articles
- Tohru Eguchi and Kazuhiro Hikami Superconformal Algebras and Mock Theta Functions, 2009
- Kawai, Toshiya, Yasuhiko Yamada, and Sung-Kil Yang. 1994. “Elliptic Genera and N = 2 Superconformal Field Theory.” Nuclear Physics B 414 (1–2) (February 14): 191–212. doi:10.1016/0550-3213(94)90428-6.
- Odake, Satoru. 1990. “c=3d conformal algebra with extended supersymmetry.” Modern Physics Letters A 05 (08) (March 30): 561–580. doi:http://dx.doi.org/10.1142/S0217732390000640.
- Odake, Satoru. 1990. “Character formulas of an extended superconformal algebra relevant to string compactification” International Journal of Modern Physics A 05 (05) (March 10): 897–914. doi:http://dx.doi.org/10.1142/S0217751X90000428.
- Eguchi, Tohru, and Anne Taormina. 1987. “Unitary Representations of the N=4 Superconformal Algebra.” Physics Letters B 196 (1) (September 24): 75–81. doi:10.1016/0370-2693(87)91679-0.
- Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:10.1016/0550-3213(89)90454-9.
- Yutaka Matsuo Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
메타데이터
위키데이터
- ID : Q6956294
Spacy 패턴 목록
- [{'LOWER': 'n'}, {'LOWER': '='}, {'LOWER': '2'}, {'LOWER': 'superconformal'}, {'LEMMA': 'algebra'}]