"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
*  Belyi's theorem on algebraic curves<br>
+
*  Belyi's theorem on algebraic curves
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
+
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points <math>\{0,1,\infty\}</math> only.
 
* Belyi map gives rise to a projective curve
 
* Belyi map gives rise to a projective curve
  
 
+
  
 
+
  
<h5>Belyi maps of degree 2</h5>
+
==Belyi maps of degree 2==
  
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
+
* Belyi map <math>f:\mathbb{P}^1\to \mathbb{P}^1</math> defined by <math>z\mapsto z^2</math>
  
 
+
  
 
+
  
<h5>Grobner techniques</h5>
+
==Grobner techniques==
  
* start with three permutations (12), (23), (132). They generate S_3.
+
* start with three permutations <math>(12), (23), (132)</math>. They generate <math>S_3</math>.
* Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
+
* Riemann-Hurwitz formula gives the genus <math>g=1-3+(1+1+2)/2=0</math>
  
 
+
  
 
+
  
<h5>complex analytic method</h5>
+
==complex analytic method==
  
 
* using modular forms
 
* using modular forms
  
 
+
  
 
+
  
<h5>p-adic method</h5>
+
==p-adic method==
  
 
+
  
 
 
  
 
 
  
 
+
  
<h5>history</h5>
+
==related items==
 +
* [[Dessin d'enfant]]
 +
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==expositions==
 +
* Sijsling, Jeroen, and John Voight. 2013. “On Computing Belyi Maps.” arXiv:1311.2529 [math] (November 11). http://arxiv.org/abs/1311.2529.
 +
* Zvonkin, [https://www.labri.fr/perso/zvonkin/Research/belyi.pdf Belyi functions: examples, properties, and applications]
 +
* Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6.
  
 
 
  
 
+
==articles==
 +
* Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
 +
* Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
 +
* Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
 +
* Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.
  
<h5>related items</h5>
+
==encyclopedia==
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
  
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
 
* http://en.wikipedia.org/wiki/Dessin_d%27enfant
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
* [http://www.cems.uvm.edu/%7Evoight/ http://www.cems.uvm.edu/~voight/]
 
* http://arxiv.org/
 
  
 
+
  
 
 
  
<h5>links</h5>
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q3024615 Q3024615]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]

2021년 2월 17일 (수) 03:14 기준 최신판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points \(\{0,1,\infty\}\) only.
  • Belyi map gives rise to a projective curve



Belyi maps of degree 2

  • Belyi map \(f:\mathbb{P}^1\to \mathbb{P}^1\) defined by \(z\mapsto z^2\)



Grobner techniques

  • start with three permutations \((12), (23), (132)\). They generate \(S_3\).
  • Riemann-Hurwitz formula gives the genus \(g=1-3+(1+1+2)/2=0\)



complex analytic method

  • using modular forms



p-adic method

related items


expositions


articles

  • Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
  • Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
  • Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
  • Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.

encyclopedia

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]