"Belyi map"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 7개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==introduction==  | ==introduction==  | ||
| − | *  Belyi's theorem on algebraic curves  | + | *  Belyi's theorem on algebraic curves  | 
| − | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points   | + | ** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points <math>\{0,1,\infty\}</math> only.  | 
* Belyi map gives rise to a projective curve  | * Belyi map gives rise to a projective curve  | ||
| − | + | ||
| − | + | ||
==Belyi maps of degree 2==  | ==Belyi maps of degree 2==  | ||
| − | * Belyi map   | + | * Belyi map <math>f:\mathbb{P}^1\to \mathbb{P}^1</math> defined by <math>z\mapsto z^2</math>  | 
| − | + | ||
| − | + | ||
==Grobner techniques==  | ==Grobner techniques==  | ||
| − | * start with three permutations   | + | * start with three permutations <math>(12), (23), (132)</math>. They generate <math>S_3</math>.  | 
| − | * Riemann-Hurwitz formula gives the genus   | + | * Riemann-Hurwitz formula gives the genus <math>g=1-3+(1+1+2)/2=0</math>  | 
| − | + | ||
| − | + | ||
==complex analytic method==  | ==complex analytic method==  | ||
| 30번째 줄: | 30번째 줄: | ||
* using modular forms  | * using modular forms  | ||
| − | + | ||
| − | + | ||
==p-adic method==  | ==p-adic method==  | ||
| − | + | ||
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==related items==  | ==related items==  | ||
* [[Dessin d'enfant]]  | * [[Dessin d'enfant]]  | ||
| − | + | ||
==expositions==  | ==expositions==  | ||
| 61번째 줄: | 53번째 줄: | ||
==articles==  | ==articles==  | ||
| + | * Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3  | ||
| + | * Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.  | ||
* Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.  | * Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.  | ||
* Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.  | * Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.  | ||
| − | |||
| − | |||
==encyclopedia==  | ==encyclopedia==  | ||
| 70번째 줄: | 62번째 줄: | ||
* http://en.wikipedia.org/wiki/Dessin_d%27enfant  | * http://en.wikipedia.org/wiki/Dessin_d%27enfant  | ||
| − | + | ||
| 76번째 줄: | 68번째 줄: | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
[[분류:math]]  | [[분류:math]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q3024615 Q3024615]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]  | ||
2021년 2월 17일 (수) 02:14 기준 최신판
introduction
- Belyi's theorem on algebraic curves
- any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points \(\{0,1,\infty\}\) only.
 
 - Belyi map gives rise to a projective curve
 
 
 
Belyi maps of degree 2
- Belyi map \(f:\mathbb{P}^1\to \mathbb{P}^1\) defined by \(z\mapsto z^2\)
 
 
 
Grobner techniques
- start with three permutations \((12), (23), (132)\). They generate \(S_3\).
 - Riemann-Hurwitz formula gives the genus \(g=1-3+(1+1+2)/2=0\)
 
 
 
complex analytic method
- using modular forms
 
 
 
p-adic method
expositions
- Sijsling, Jeroen, and John Voight. 2013. “On Computing Belyi Maps.” arXiv:1311.2529 [math] (November 11). http://arxiv.org/abs/1311.2529.
 - Zvonkin, Belyi functions: examples, properties, and applications
 - Magot, Nicolas, and Alexander Zvonkin. 2000. “Belyi Functions for Archimedean Solids.” Discrete Mathematics 217 (1–3) (April 28): 249–271. doi:10.1016/S0012-365X(99)00266-6.
 
articles
- Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
 - Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
 - Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
 - Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.
 
encyclopedia
메타데이터
위키데이터
- ID : Q3024615
 
Spacy 패턴 목록
- [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]