"PSLQ for dilogarithm identities"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
imported>Pythagoras0 |
||
| (같은 사용자의 중간 판 7개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
| + | * Implement the [[PSLQ algorithm]] first. | ||
| + | * I found | ||
| − | + | <math>-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0</math> or | |
| − | + | <math>2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}</math> | |
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==related items== | ==related items== | ||
| − | * [[PSLQ algorithm]] | + | * [[PSLQ algorithm]] |
| − | * [[Slater 34]] | + | * [[Slater 34]] |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==computational resource== | |
| + | * https://docs.google.com/file/d/0B8XXo8Tve1cxNW0ta2hCUVJPdmc/edit | ||
| − | |||
| − | |||
| − | + | [[분류:개인노트]] | |
| − | + | [[Category:계산]] | |
| − | + | [[Category:quantum dimensions]] | |
| − | + | [[분류:dilogarithm]] | |
| − | [[분류: | + | [[분류:migrate]] |
2020년 11월 12일 (목) 22:53 기준 최신판
introduction
- Implement the PSLQ algorithm first.
- I found
\(-2L(1)+2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=0\) or
\(2L(\alpha)+2L(\alpha^{2})-L(\alpha^{4})=\frac{\pi^2}{3}\)