"T-duality"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 21개는 보이지 않습니다)
1번째 줄: 1번째 줄:
http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
+
==introduction==
 +
* the T stands for toroidal
 +
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.
 +
* <math>\int \partial X \bar{\partial}X</math>
 +
* <math>X=X+2\pi R</math>
 +
* T-duality
 +
:<math>\tilde{R}=\frac{\alpha'}{R}</math>
 +
* http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF
 +
* http://www.sciencedirect.com/science/article/pii/0370269389910605
 +
* T - duality of two-dimensional quantum gravity
 +
  
 
+
==related items==
  
T-Duality<br> This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.
+
* [[c=1 representations]]
  
http://www.sukidog.com/jpierre/strings/glossary.htm
+
 
 +
==encyclopedia==
 +
 
 +
* http://en.wikipedia.org/wiki/T-duality
 +
 
 +
 
 +
==articles==
 +
* Luu, Martin. ‘Local Langlands Duality and a Duality of Conformal Field Theories’. arXiv:1506.00663 [hep-Th, Physics:math-Ph], 1 June 2015. http://arxiv.org/abs/1506.00663.
 +
* Mathai, Varghese, and Guo Chuan Thiang. ‘T-Duality and Topological Insulators’. arXiv:1503.01206 [hep-Th, Physics:math-Ph], 3 March 2015. http://arxiv.org/abs/1503.01206.
 +
 
 +
 
 +
 
 +
[[분류:개인노트]]
 +
[[분류:duality]]
 +
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1366191 Q1366191]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 't'}, {'OP': '*'}, {'LEMMA': 'duality'}]

2021년 2월 17일 (수) 02:10 기준 최신판

introduction

  • the T stands for toroidal
  • This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.
  • \(\int \partial X \bar{\partial}X\)
  • \(X=X+2\pi R\)
  • T-duality

\[\tilde{R}=\frac{\alpha'}{R}\]


related items


encyclopedia


articles

  • Luu, Martin. ‘Local Langlands Duality and a Duality of Conformal Field Theories’. arXiv:1506.00663 [hep-Th, Physics:math-Ph], 1 June 2015. http://arxiv.org/abs/1506.00663.
  • Mathai, Varghese, and Guo Chuan Thiang. ‘T-Duality and Topological Insulators’. arXiv:1503.01206 [hep-Th, Physics:math-Ph], 3 March 2015. http://arxiv.org/abs/1503.01206.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 't'}, {'OP': '*'}, {'LEMMA': 'duality'}]