"Ito calculus"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) (→메타데이터) |
||
(사용자 2명의 중간 판 8개는 보이지 않습니다) | |||
6번째 줄: | 6번째 줄: | ||
==basic probability theory== | ==basic probability theory== | ||
− | * | + | * [[Basic probability theory]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Ito SDE== | ==Ito SDE== | ||
;def | ;def | ||
− | A stochastic process | + | A stochastic process <math>X(t)</math> is said to satisfy an Ito SDE, written as, |
− | + | :<math> | |
dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} | dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} | ||
− | + | </math> | |
− | if for | + | if for <math>t\ge 0</math> it satisfies the integral equation, |
− | + | :<math> | |
X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) | X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) | ||
− | + | </math> | |
===Kolmogorov equation=== | ===Kolmogorov equation=== | ||
* [[Fokker-Planck equation|Fokker-Planck equations]], also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve | * [[Fokker-Planck equation|Fokker-Planck equations]], also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve | ||
− | * let | + | * let <math>p(x,t)</math> be the p.d.f. of the stochastic process <math>X(t)</math> satisfying \ref{ito}. Then |
− | + | :<math> | |
\frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} | \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} | ||
− | + | </math> | |
===multi-dimensional version=== | ===multi-dimensional version=== | ||
* see Klebaner2005 | * see Klebaner2005 | ||
43번째 줄: | 30번째 줄: | ||
{\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t)) {\rm d} B(t), \qquad X(0) = x_0\in \mathbb{R}^{d}, | {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t)) {\rm d} B(t), \qquad X(0) = x_0\in \mathbb{R}^{d}, | ||
\end{equation} | \end{equation} | ||
− | where | + | where <math>X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d</math>, <math>f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d</math>, <math>\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}</math>. <math>B(t)</math> is an <math>n</math>-dimensional Brownian motion, and <math>f</math> and <math>g</math> satisfy certain smoothness conditions. The probability density function <math>p(x,t)</math> for the solution <math>X(t)</math> in (\ref{s1_000}) can be expressed as |
\begin{align}\label{s1_001} | \begin{align}\label{s1_001} | ||
\frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x) p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right], | \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x) p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right], | ||
\end{align} | \end{align} | ||
− | where | + | where <math>D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)</math>. |
==example== | ==example== | ||
53번째 줄: | 40번째 줄: | ||
* Loewner equantion | * Loewner equantion | ||
− | + | ||
==related items== | ==related items== | ||
68번째 줄: | 55번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:probability]] | [[분류:probability]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | == 노트 == | ||
+ | |||
+ | ===말뭉치=== | ||
+ | # Vlad Gheorghiu (CMU) Ito calculus in a nutshell April 7, 2011 4 / 23 Elementary random processes If we now calculate expectations of Si it does matter what information we have.<ref name="ref_680e2caa">[https://quantum.phys.cmu.edu/QIP/ito_calculus.pdf Itˆo calculus in a nutshell]</ref> | ||
+ | # Itos lemma is often used in Ito calculus to nd the dierentials of a stochastic process that depends on time.<ref name="ref_1f963234">[https://math.uchicago.edu/~may/REU2017/REUPapers/Yoo.pdf Stochastic calculus and black-scholes model]</ref> | ||
+ | # The Ito calculus is about systems driven by white noise.<ref name="ref_fc563a79">[https://www.math.nyu.edu/~goodman/teaching/StochCalc2007/notes/l7.pdf Stochastic calculus notes, lecture 7]</ref> | ||
+ | # This test of survival under the limit dt=0 and sum determines the rules ( Ito calculus ) at the beginning of this section.<ref name="ref_458abe97">[http://www.lukoe.com/finance/quantNotes/Ito_calculus_.html Ito calculus.]</ref> | ||
+ | # 1. First Contact with Ito Calculus From the practitioners point of view, the Ito calculus is a tool for manip- ulating those stochastic processes which are most closely related to Brow- nian motion.<ref name="ref_507f2020">[http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/EASItoCalculus.pdf It ˆo calculus]</ref> | ||
+ | # Abstract The Functional Ito calculus is a non-anticipative functional calculus which extends the Ito calculus to path-dependent functionals of stochas- tic processes.<ref name="ref_6196a20d">[http://rama.cont.perso.math.cnrs.fr/BarcelonaLectureNotes.pdf Functional ito calculus]</ref> | ||
+ | # The Functional Ito calculus has led to various applications in the study of path-dependent functionals of stochastic processes.<ref name="ref_6196a20d" /> | ||
+ | ===소스=== | ||
+ | <references /> | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q947053 Q947053] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'ito'}, {'LEMMA': 'calculus'}] | ||
+ | * [{'LOWER': 'itō'}, {'LEMMA': 'calculus'}] |
2022년 8월 21일 (일) 19:13 기준 최신판
introduction
- start with Brownian motion
- http://www.mathematica-journal.com/issue/v9i4/contents/StochasticIntegrals/StochasticIntegrals_1.html
- http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/AoMtSC.pdf
basic probability theory
Ito SDE
- def
A stochastic process \(X(t)\) is said to satisfy an Ito SDE, written as, \[ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} \] if for \(t\ge 0\) it satisfies the integral equation, \[ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) \]
Kolmogorov equation
- Fokker-Planck equations, also known as Fokker-Planck-Kolmogorov equations or forward Kolmogorov equations, are deterministic equations describing how probability density functions evolve
- let \(p(x,t)\) be the p.d.f. of the stochastic process \(X(t)\) satisfying \ref{ito}. Then
\[ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} \]
multi-dimensional version
- see Klebaner2005
- consider the following Ito SDE
\begin{equation}\label{s1_000} {\rm d} X(t) = f(X(t)){\rm d}t + \sigma(X(t)) {\rm d} B(t), \qquad X(0) = x_0\in \mathbb{R}^{d}, \end{equation} where \(X(t)=(X_1(t),X_2(t),\cdots,X_d(t))^T \in \mathbb{R}^d\), \(f=(f_1, f_2,\cdots,f_d)^T: \mathbb{R}^d\to \mathbb{R}^d\), \(\sigma=(\sigma_{ij})_{d\times n}: \mathbb{R}^d \to \mathbb{R}^{d\times n}\). \(B(t)\) is an \(n\)-dimensional Brownian motion, and \(f\) and \(g\) satisfy certain smoothness conditions. The probability density function \(p(x,t)\) for the solution \(X(t)\) in (\ref{s1_000}) can be expressed as \begin{align}\label{s1_001} \frac{\partial p(x, t)}{\partial t} &= - \sum^{d}_{i=1}\frac{\partial }{\partial x_{i}} \left[f_{i}(x) p(x, t)\right] + \sum^{d}_{i,j=1} \frac{\partial ^2}{\partial x_{i}\partial x_{j}}\left[D_{ij}(x)p(x, t) \right], \end{align} where \(D_{ij}(x)= \sum_{k=1}^n \sigma_{ik}(x)\sigma_{kj}(x)\).
example
- Loewner equantion
computational resource
- http://mathematica.stackexchange.com/questions/30558/solving-a-stochastic-differential-equation?rq=1
- http://mathematica.stackexchange.com/questions/83645/martingale-pricing-simulation-random-walk-stock-price
노트
말뭉치
- Vlad Gheorghiu (CMU) Ito calculus in a nutshell April 7, 2011 4 / 23 Elementary random processes If we now calculate expectations of Si it does matter what information we have.[1]
- Itos lemma is often used in Ito calculus to nd the dierentials of a stochastic process that depends on time.[2]
- The Ito calculus is about systems driven by white noise.[3]
- This test of survival under the limit dt=0 and sum determines the rules ( Ito calculus ) at the beginning of this section.[4]
- 1. First Contact with Ito Calculus From the practitioners point of view, the Ito calculus is a tool for manip- ulating those stochastic processes which are most closely related to Brow- nian motion.[5]
- Abstract The Functional Ito calculus is a non-anticipative functional calculus which extends the Ito calculus to path-dependent functionals of stochas- tic processes.[6]
- The Functional Ito calculus has led to various applications in the study of path-dependent functionals of stochastic processes.[6]
소스
메타데이터
위키데이터
- ID : Q947053
Spacy 패턴 목록
- [{'LOWER': 'ito'}, {'LEMMA': 'calculus'}]
- [{'LOWER': 'itō'}, {'LEMMA': 'calculus'}]