"Gromov-Witten invariants of compact Calabi-Yau orbifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
 
(같은 사용자의 중간 판 7개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==Katz-Klemm-Vafa conjecture for K3 surfaces==
 +
* KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms
 +
* recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera
 +
 +
 
==related items==
 
==related items==
 
* [[Calabi-Yau threefolds]]
 
* [[Calabi-Yau threefolds]]
4번째 줄: 9번째 줄:
  
 
==articles==
 
==articles==
 +
* Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, arXiv:1604.07123 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07123
 +
* R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698
 +
* Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
 +
* Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
 
* Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
 
* Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
 +
 +
== expositions ==
 +
 +
* R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896
 +
[[분류:migrate]]

2020년 11월 12일 (목) 23:28 기준 최신판

Katz-Klemm-Vafa conjecture for K3 surfaces

  • KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms
  • recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera


related items


articles

  • Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, arXiv:1604.07123 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07123
  • R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698
  • Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
  • Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
  • Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.

expositions