"Dimer model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   (→메타데이터)  | 
				|||
| (사용자 3명의 중간 판 69개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction==  | |
| − | *   | + | * relation to Bethe ansatz [http://staff.science.uva.nl/%7Enienhuis/tiles.pdf http://staff.science.uva.nl/~nienhuis/tiles.pdf]  | 
| − | *   | + | * [[domino tiling]]  | 
| − | + | ||
| − | + | ||
| − | + | ==basic notions==  | |
* dimer configurations  | * dimer configurations  | ||
* set of dimer configurations  | * set of dimer configurations  | ||
* partition function  | * partition function  | ||
| + | * Kasteleyn matrix  | ||
| + | * height function  | ||
| + | * spectral curve  | ||
| + | * surface tension  | ||
| − | + | ||
| − | + | ||
| − | + | ==Termperley equivalence==  | |
| − | + | * spanning trees on \gamma rooted at x  | |
| + | * dimers on D(\gamma)  | ||
| − | + | ||
| − | + | ||
| − | + | ==Domino tiling and height function==  | |
| − | + | * bipartite graph  | |
| − | + | ||
| − | + | ||
| − | + | ==energy and weight systems==  | |
| − | + | *  define a weight function on the edges of the graph \gamma<math>w:E(\Gamma)\to \mathbb{R}_{\geq 0}</math>  | |
| + | *  For a dimer configuration D,<math>w(D)=\prod_{e\in D} w(e)</math>  | ||
| + | *  energy function<math>\epsilon:E(\Gamma)\to \mathbb{R}</math>  | ||
| + | *  For a dimer configuration D,<math>\epsilon(D)=\sum_{e\in D} \epsilon(e)</math>  | ||
| + | *  energy and weight function<math>w(e)=\exp (-\frac{\epsilon(e)}{T})</math>  | ||
| + | *  partition function<math>Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)</math>  | ||
| − | + | ||
| − | + | ||
| − | + | ==fH==  | |
| + | * P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus  | ||
| + | * g=|int(N)|  | ||
| + | * P(z_0,z_2)=0 is harnack if the [[amoeba]] map is at most 2-to-1.  | ||
| − | |||
| − | |||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ==memo==  | |
| − | + | * [http://www.math.brown.edu/%7Erkenyon/talks/ http://www.math.brown.edu/~rkenyon/talks/]  | |
| + | * [http://www.umich.edu/%7Emctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf]  | ||
| + | * [http://www.lif.univ-mrs.fr/%7Efernique/info/slides_csr.pdf http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==history==  | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| − | + | ||
| − | + | ||
| − | |||
| − | |||
| + | ==related items==  | ||
| + | * [[Schramm–Loewner evolution (SLE)]]  | ||
| + | * [[basic thermodynamics & statistical mechanics]]  | ||
* [[Schramm–Loewner evolution (SLE)]]  | * [[Schramm–Loewner evolution (SLE)]]  | ||
| − | * [[  | + | * [[Gaussian free field theory]]  | 
| − | + | ||
| − | + | ||
| − | + | ==encyclopedia==  | |
* http://en.wikipedia.org/wiki/Domino_tiling  | * http://en.wikipedia.org/wiki/Domino_tiling  | ||
* http://en.wikipedia.org/wiki/Lozenge  | * http://en.wikipedia.org/wiki/Lozenge  | ||
* http://en.wikipedia.org/wiki/Gaussian_free_field  | * http://en.wikipedia.org/wiki/Gaussian_free_field  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ||
| − | |||
| − | + | ==links==  | |
| − | + | * http://ipht.cea.fr/statcomb2009/dimers/abstracts.html  | |
| − | * http://  | ||
| − | |||
| − | |||
| − | + | ||
| − | + | ||
| − | + | ==expositions==  | |
| − | + | * Cimasoni, David. “The Geometry of Dimer Models.” arXiv:1409.4631 [math-Ph], September 16, 2014. http://arxiv.org/abs/1409.4631.  | |
| − | *   | + | * http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7  | 
| − | *  pictures  | + | * dimer models for mathematicians  | 
| + | * [http://www.math.brown.edu/%7Erkenyon/talks/amsterdam.pdf Dimers, Amoebae and Limit shapes]  | ||
| + | * [http://www.math.brown.edu/%7Erkenyon/papers/index.html Dimers, the complex burgers equation, and curves inscribed in polygonsl]  | ||
| + | * [http://www.math.brown.edu/%7Erkenyon/papers/leshouches.pdf The dimer model ]Richard Kenyon,  | ||
| + | * [http://www.math.brown.edu/%7Erkenyon/papers/de2.pdf Dimer Problems] Richard Kenyon, 2005  | ||
| + | * [http://arxiv.org/abs/math/0312099 Gaussian free fields for mathematiciansn] Scott Sheffield, 2003  | ||
| + | * [http://arxiv.org/abs/math/0310326 An introduction to the dimer model] Richard Kenyon, 2003  | ||
| + | * [http://proba.jussieu.fr/%7Edetiliere/Cours/Ecole_Doctorale.pdf The dimer model in Statistical mechanics]  | ||
| + | * [http://pictor.math.uqam.ca/%7Eplouffe/OEIS/archive_in_pdf/domino.pdf Dimers and Dominos] James Propp, 1992  | ||
| + | *  pictures  | ||
** http://research.microsoft.com/en-us/um/people/cohn/randomtilings.html  | ** http://research.microsoft.com/en-us/um/people/cohn/randomtilings.html  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==articles==  | |
| + | * Alexi Morin-Duchesne, Jorgen Rasmussen, Philippe Ruelle, Integrability and conformal data of the dimer model, arXiv:1507.04193 [hep-th], July 15 2015, http://arxiv.org/abs/1507.04193  | ||
| + | * Geoffrey R. Grimmett, Zhongyang Li, Critical surface of the hexagonal polygon model, http://arxiv.org/abs/1508.07492v2  | ||
| + | * Wangru Sun, Toroidal Dimer Model and Temperley's Bijection, http://arxiv.org/abs/1603.00690v1  | ||
| + | * Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.  | ||
| + | * Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:[http://dx.doi.org/10.1103/PhysRevE.75.040105 10.1103/PhysRevE.75.040105].  | ||
| + | * http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf  | ||
| + | * Kenyon, Richard, and Andrei Okounkov. “Limit Shapes and the Complex Burgers Equation.” arXiv:math-ph/0507007, July 1, 2005. http://arxiv.org/abs/math-ph/0507007.  | ||
| + | * Kenyon, Richard, and Andrei Okounkov. “Planar Dimers and Harnack Curves.” arXiv:math/0311062, November 5, 2003. http://arxiv.org/abs/math/0311062.  | ||
| + | * Kenyon, Richard, Andrei Okounkov, and Scott Sheffield. “Dimers and Amoebae.” arXiv:math-ph/0311005, November 5, 2003. http://arxiv.org/abs/math-ph/0311005.  | ||
| + | * Kenyon, Richard, and Scott Sheffield. “Dimers, Tilings and Trees.” arXiv:math/0310195, October 13, 2003. http://arxiv.org/abs/math/0310195.  | ||
| + | * Cohn, Henry, Richard Kenyon, and James Propp. “A Variational Principle for Domino Tilings.” Journal of the American Mathematical Society 14, no. 02 (April 1, 2001): 297–347. doi:10.1090/S0894-0347-00-00355-6.  | ||
| + | * Kenyon, Richard. “Conformal Invariance of Domino Tiling.” The Annals of Probability 28, no. 2 (April 2000): 759–95. doi:10.1214/aop/1019160260.  | ||
| + | * Kenyon, Richard. “The Asymptotic Determinant of the Discrete Laplacian.” Acta Mathematica 185, no. 2 (September 1, 2000): 239–86. doi:10.1007/BF02392811.  | ||
| + | * W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.  | ||
| + | * Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:[http://dx.doi.org/10.1063/1.1703953 10.1063/1.1703953].   | ||
| + | * Fisher, Michael E. “Statistical Mechanics of Dimers on a Plane Lattice.” Physical Review 124, no. 6 (December 15, 1961): 1664–72. doi:10.1103/PhysRev.124.1664.  | ||
| + | * Kasteleyn, P. W. “The Statistics of Dimers on a Lattice: I. The Number of Dimer Arrangements on a Quadratic Lattice.” Physica 27, no. 12 (December 1961): 1209–25. doi:10.1016/0031-8914(61)90063-5.  | ||
| − | |||
| − | |||
| − | + | [[분류:integrable systems]]  | |
| + | [[분류:math and physics]]  | ||
| + | [[분류:dimer model]]  | ||
| + | [[분류:migrate]]  | ||
| − | + | ==메타데이터==  | |
| − | + | ===위키데이터===  | |
| − | *   | + | * ID :  [https://www.wikidata.org/wiki/Q21042776 Q21042776]  | 
| − | + | ===Spacy 패턴 목록===  | |
| − | * [  | + | * [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]  | 
| − | |||
| − | |||
2021년 2월 17일 (수) 02:05 기준 최신판
introduction
- relation to Bethe ansatz http://staff.science.uva.nl/~nienhuis/tiles.pdf
 - domino tiling
 
 
 
basic notions
- dimer configurations
 - set of dimer configurations
 - partition function
 - Kasteleyn matrix
 - height function
 - spectral curve
 - surface tension
 
 
 
Termperley equivalence
- spanning trees on \gamma rooted at x
 - dimers on D(\gamma)
 
 
 
Domino tiling and height function
- bipartite graph
 
 
 
energy and weight systems
- define a weight function on the edges of the graph \gamma\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\)
 - For a dimer configuration D,\(w(D)=\prod_{e\in D} w(e)\)
 - energy function\(\epsilon:E(\Gamma)\to \mathbb{R}\)
 - For a dimer configuration D,\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\)
 - energy and weight function\(w(e)=\exp (-\frac{\epsilon(e)}{T})\)
 - partition function\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\)
 
 
 
fH
- P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus
 - g=|int(N)|
 - P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.
 
 
 
 
memo
- http://www.math.brown.edu/~rkenyon/talks/
 - http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf
 - http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf
 
 
 
 
history
 
 
- Schramm–Loewner evolution (SLE)
 - basic thermodynamics & statistical mechanics
 - Schramm–Loewner evolution (SLE)
 - Gaussian free field theory
 
 
 
encyclopedia
- http://en.wikipedia.org/wiki/Domino_tiling
 - http://en.wikipedia.org/wiki/Lozenge
 - http://en.wikipedia.org/wiki/Gaussian_free_field
 
links
 
 
expositions
- Cimasoni, David. “The Geometry of Dimer Models.” arXiv:1409.4631 [math-Ph], September 16, 2014. http://arxiv.org/abs/1409.4631.
 - http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7
 - dimer models for mathematicians
 - Dimers, Amoebae and Limit shapes
 - Dimers, the complex burgers equation, and curves inscribed in polygonsl
 - The dimer model Richard Kenyon,
 - Dimer Problems Richard Kenyon, 2005
 - Gaussian free fields for mathematiciansn Scott Sheffield, 2003
 - An introduction to the dimer model Richard Kenyon, 2003
 - The dimer model in Statistical mechanics
 - Dimers and Dominos James Propp, 1992
 - pictures
 
articles
- Alexi Morin-Duchesne, Jorgen Rasmussen, Philippe Ruelle, Integrability and conformal data of the dimer model, arXiv:1507.04193 [hep-th], July 15 2015, http://arxiv.org/abs/1507.04193
 - Geoffrey R. Grimmett, Zhongyang Li, Critical surface of the hexagonal polygon model, http://arxiv.org/abs/1508.07492v2
 - Wangru Sun, Toroidal Dimer Model and Temperley's Bijection, http://arxiv.org/abs/1603.00690v1
 - Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
 - Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:10.1103/PhysRevE.75.040105.
 - http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
 - Kenyon, Richard, and Andrei Okounkov. “Limit Shapes and the Complex Burgers Equation.” arXiv:math-ph/0507007, July 1, 2005. http://arxiv.org/abs/math-ph/0507007.
 - Kenyon, Richard, and Andrei Okounkov. “Planar Dimers and Harnack Curves.” arXiv:math/0311062, November 5, 2003. http://arxiv.org/abs/math/0311062.
 - Kenyon, Richard, Andrei Okounkov, and Scott Sheffield. “Dimers and Amoebae.” arXiv:math-ph/0311005, November 5, 2003. http://arxiv.org/abs/math-ph/0311005.
 - Kenyon, Richard, and Scott Sheffield. “Dimers, Tilings and Trees.” arXiv:math/0310195, October 13, 2003. http://arxiv.org/abs/math/0310195.
 - Cohn, Henry, Richard Kenyon, and James Propp. “A Variational Principle for Domino Tilings.” Journal of the American Mathematical Society 14, no. 02 (April 1, 2001): 297–347. doi:10.1090/S0894-0347-00-00355-6.
 - Kenyon, Richard. “Conformal Invariance of Domino Tiling.” The Annals of Probability 28, no. 2 (April 2000): 759–95. doi:10.1214/aop/1019160260.
 - Kenyon, Richard. “The Asymptotic Determinant of the Discrete Laplacian.” Acta Mathematica 185, no. 2 (September 1, 2000): 239–86. doi:10.1007/BF02392811.
 - W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
 - Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
 - Fisher, Michael E. “Statistical Mechanics of Dimers on a Plane Lattice.” Physical Review 124, no. 6 (December 15, 1961): 1664–72. doi:10.1103/PhysRev.124.1664.
 - Kasteleyn, P. W. “The Statistics of Dimers on a Lattice: I. The Number of Dimer Arrangements on a Quadratic Lattice.” Physica 27, no. 12 (December 1961): 1209–25. doi:10.1016/0031-8914(61)90063-5.
 
메타데이터
위키데이터
- ID : Q21042776
 
Spacy 패턴 목록
- [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]