"Dimer model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   (→메타데이터)  | 
				||
| (사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
| 129번째 줄: | 129번째 줄: | ||
==articles==  | ==articles==  | ||
| + | * Alexi Morin-Duchesne, Jorgen Rasmussen, Philippe Ruelle, Integrability and conformal data of the dimer model, arXiv:1507.04193 [hep-th], July 15 2015, http://arxiv.org/abs/1507.04193  | ||
| + | * Geoffrey R. Grimmett, Zhongyang Li, Critical surface of the hexagonal polygon model, http://arxiv.org/abs/1508.07492v2  | ||
| + | * Wangru Sun, Toroidal Dimer Model and Temperley's Bijection, http://arxiv.org/abs/1603.00690v1  | ||
* Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.  | * Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.  | ||
* Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:[http://dx.doi.org/10.1103/PhysRevE.75.040105 10.1103/PhysRevE.75.040105].  | * Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:[http://dx.doi.org/10.1103/PhysRevE.75.040105 10.1103/PhysRevE.75.040105].  | ||
| 149번째 줄: | 152번째 줄: | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
[[분류:dimer model]]  | [[분류:dimer model]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q21042776 Q21042776]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]  | ||
2021년 2월 17일 (수) 02:05 기준 최신판
introduction
- relation to Bethe ansatz http://staff.science.uva.nl/~nienhuis/tiles.pdf
 - domino tiling
 
 
 
basic notions
- dimer configurations
 - set of dimer configurations
 - partition function
 - Kasteleyn matrix
 - height function
 - spectral curve
 - surface tension
 
 
 
Termperley equivalence
- spanning trees on \gamma rooted at x
 - dimers on D(\gamma)
 
 
 
Domino tiling and height function
- bipartite graph
 
 
 
energy and weight systems
- define a weight function on the edges of the graph \gamma\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\)
 - For a dimer configuration D,\(w(D)=\prod_{e\in D} w(e)\)
 - energy function\(\epsilon:E(\Gamma)\to \mathbb{R}\)
 - For a dimer configuration D,\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\)
 - energy and weight function\(w(e)=\exp (-\frac{\epsilon(e)}{T})\)
 - partition function\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\)
 
 
 
fH
- P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus
 - g=|int(N)|
 - P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.
 
 
 
 
memo
- http://www.math.brown.edu/~rkenyon/talks/
 - http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf
 - http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf
 
 
 
 
history
 
 
- Schramm–Loewner evolution (SLE)
 - basic thermodynamics & statistical mechanics
 - Schramm–Loewner evolution (SLE)
 - Gaussian free field theory
 
 
 
encyclopedia
- http://en.wikipedia.org/wiki/Domino_tiling
 - http://en.wikipedia.org/wiki/Lozenge
 - http://en.wikipedia.org/wiki/Gaussian_free_field
 
links
 
 
expositions
- Cimasoni, David. “The Geometry of Dimer Models.” arXiv:1409.4631 [math-Ph], September 16, 2014. http://arxiv.org/abs/1409.4631.
 - http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7
 - dimer models for mathematicians
 - Dimers, Amoebae and Limit shapes
 - Dimers, the complex burgers equation, and curves inscribed in polygonsl
 - The dimer model Richard Kenyon,
 - Dimer Problems Richard Kenyon, 2005
 - Gaussian free fields for mathematiciansn Scott Sheffield, 2003
 - An introduction to the dimer model Richard Kenyon, 2003
 - The dimer model in Statistical mechanics
 - Dimers and Dominos James Propp, 1992
 - pictures
 
articles
- Alexi Morin-Duchesne, Jorgen Rasmussen, Philippe Ruelle, Integrability and conformal data of the dimer model, arXiv:1507.04193 [hep-th], July 15 2015, http://arxiv.org/abs/1507.04193
 - Geoffrey R. Grimmett, Zhongyang Li, Critical surface of the hexagonal polygon model, http://arxiv.org/abs/1508.07492v2
 - Wangru Sun, Toroidal Dimer Model and Temperley's Bijection, http://arxiv.org/abs/1603.00690v1
 - Cimasoni, David, and Nicolai Reshetikhin. “Dimers on Surface Graphs and Spin Structures. II.” Communications in Mathematical Physics 281, no. 2 (July 2008): 445–68. doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
 - Wang, Fa, and F. Y. Wu. “Exact Solution of Close-Packed Dimers on the Kagomé Lattice.” Physical Review E 75, no. 4 (April 19, 2007): 040105. doi:10.1103/PhysRevE.75.040105.
 - http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
 - Kenyon, Richard, and Andrei Okounkov. “Limit Shapes and the Complex Burgers Equation.” arXiv:math-ph/0507007, July 1, 2005. http://arxiv.org/abs/math-ph/0507007.
 - Kenyon, Richard, and Andrei Okounkov. “Planar Dimers and Harnack Curves.” arXiv:math/0311062, November 5, 2003. http://arxiv.org/abs/math/0311062.
 - Kenyon, Richard, Andrei Okounkov, and Scott Sheffield. “Dimers and Amoebae.” arXiv:math-ph/0311005, November 5, 2003. http://arxiv.org/abs/math-ph/0311005.
 - Kenyon, Richard, and Scott Sheffield. “Dimers, Tilings and Trees.” arXiv:math/0310195, October 13, 2003. http://arxiv.org/abs/math/0310195.
 - Cohn, Henry, Richard Kenyon, and James Propp. “A Variational Principle for Domino Tilings.” Journal of the American Mathematical Society 14, no. 02 (April 1, 2001): 297–347. doi:10.1090/S0894-0347-00-00355-6.
 - Kenyon, Richard. “Conformal Invariance of Domino Tiling.” The Annals of Probability 28, no. 2 (April 2000): 759–95. doi:10.1214/aop/1019160260.
 - Kenyon, Richard. “The Asymptotic Determinant of the Discrete Laplacian.” Acta Mathematica 185, no. 2 (September 1, 2000): 239–86. doi:10.1007/BF02392811.
 - W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
 - Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
 - Fisher, Michael E. “Statistical Mechanics of Dimers on a Plane Lattice.” Physical Review 124, no. 6 (December 15, 1961): 1664–72. doi:10.1103/PhysRev.124.1664.
 - Kasteleyn, P. W. “The Statistics of Dimers on a Lattice: I. The Number of Dimer Arrangements on a Quadratic Lattice.” Physica 27, no. 12 (December 1961): 1209–25. doi:10.1016/0031-8914(61)90063-5.
 
메타데이터
위키데이터
- ID : Q21042776
 
Spacy 패턴 목록
- [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]