"Transfer matrix in statistical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 7개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* transfer matrix is builtup from matrices of  Boltzmann weights
+
* transfer matrix is builtup from matrices of Boltzmann weights
* trace of monodromy matrix is the transfer matrix
+
* trace of [[Monodromy matrix]] is the transfer matrix
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
* [[Bethe ansatz]] equation is used to find the eigenvectors and eigenvalues of the transfer matrix
+
* partition function = trace of power of transfer matrices
* partition function = trace of power of transfer matrices
+
* so the partition function is calculated in terms of the eigenvalues of the transfer matrix
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
 
 
* then the problem of solving the model is reduced to the computation of this trace
 
* then the problem of solving the model is reduced to the computation of this trace
  
  
==정의==
+
==Bethe ansatz==
* 스핀 $s_i, i=1,\cdots, N$과 주기조건 $s_{N+1}=s_1$을 가정
+
* [[Bethe ansatz]] equation is used to find the eigenvectors and eigenvalues of the transfer matrix
* 스핀 $s_i$과 $s_{i+1}$의 상호작용 $E(s_i,s_{i+1})$
 
* 해밀토니안이 $H=\sum_{i=1}^{N} E(s_i,s_{i+1})$ 꼴로 쓰여지는 경우
 
* 전달행렬은 $T_{s_i,s_{i+1}}=\exp(-\beta E(s_i,s_{i+1}))$ 꼴로 쓸 수 있으며, 분배함수는 다음과 같이 주어진다
 
$$
 
Z_N=\sum_{s_1,\cdots,s_N}T_{s_1,s_2}\cdots,T_{s_N,s_1}=\operatorname{Tr} T^N
 
$$
 
* 자유에너지(per site) 는 다음과 같다
 
$$
 
F=-\frac{1}{\beta}\lim_{N\to \infty}\frac{\ln \Lambda_0^N}{N}=-\frac{1}{\beta}\ln \Lambda_0,
 
$$
 
또는
 
$$
 
F=-\frac{1}{k T}\ln \Lambda_0,
 
$$
 
이 때 $\Lambda_0$는 $T$의 최대인 고유값
 
 
 
 
 
==transfer matrix of the 1D Ising model==
 
* [[1d Ising model]]
 
 
 
 
 
==transfer matrix of the 2D Ising model==
 
* [[Ising model on rectangular lattice]]
 
 
 
  
  
40번째 줄: 15번째 줄:
 
* [[Six-vertex model and Quantum XXZ Hamiltonian]]
 
* [[Six-vertex model and Quantum XXZ Hamiltonian]]
  
 
+
 
 
 
 
  
 
==related items==
 
==related items==
 
* [[S-matrix or scattering matrix]]
 
* [[S-matrix or scattering matrix]]
 +
* [[1d Ising model]]
 +
* [[Ising model on rectangular lattice]]
 +
  
 
 
  
 
==expositions==
 
==expositions==
 
+
* “The Kramers-Wannier Transfer Matrix.1980. In The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics, 13–39. Lecture Notes in Physics 123. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0017921.
* Anon.1980. The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics. Vol. 123. Berlin/Heidelberg: Springer-Verlag.[http://www.springerlink.com/content/f12j034740601kjx/. ]http://www.springerlink.com/content/f12j034740601kjx/.<br>  <br> 
 
 
 
 
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 05:07 기준 최신판

introduction

  • transfer matrix is builtup from matrices of Boltzmann weights
  • trace of Monodromy matrix is the transfer matrix
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • partition function = trace of power of transfer matrices
  • so the partition function is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace


Bethe ansatz

  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix


transfer matrix of the six-vertex model


related items


expositions