"Theta function of a quadratic form"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 7개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * Let | + | * Let <math>Q</math> be a positive definite integral quadratic form in <math>n</math> variables, i.e. <math>Q(X) = X^t A_{Q} X</math> for some positive definite half-integral symmetric square matrix <math>A_{Q}</math> |
− | * | + | * <math>r(Q, m)</math> : number of <math>X\in \Z^n</math> such that <math>Q(X) = m</math> |
− | * theta function of | + | * theta function of <math>Q</math> |
− | + | :<math> | |
\theta_Q(\tau)=\sum_{m=0}^\infty r(Q, m)q^{m} = \sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{2\pi i\mathbf{n}^{t}A_{Q}\mathbf{n}} | \theta_Q(\tau)=\sum_{m=0}^\infty r(Q, m)q^{m} = \sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{2\pi i\mathbf{n}^{t}A_{Q}\mathbf{n}} | ||
− | + | </math> | |
* we can use the Riemann theta function to evaluate the above | * we can use the Riemann theta function to evaluate the above | ||
− | + | :<math> | |
\Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}^t\boldsymbol{\Omega}\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} | \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}^t\boldsymbol{\Omega}\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} | ||
− | + | </math> | |
− | + | :<math> | |
\theta_Q(\tau)=\Theta(0,2A_{Q}\tau) | \theta_Q(\tau)=\Theta(0,2A_{Q}\tau) | ||
− | + | </math> | |
;thm | ;thm | ||
− | Assume that | + | * set <math>\det Q := \det (2A_Q)</math> |
− | + | * level <math>N</math> of <math>Q</math> : smallest integer <math>N</math> such that <math>N(2A_Q)^{-1}</math> is twice of a half-integral matrix | |
+ | Assume that <math>n</math> is even. For <math>\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\Z)</math> with <math>c\equiv 0 \pmod N</math>, | ||
+ | :<math> | ||
\theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) | \theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) | ||
− | + | </math> | |
− | i.e., | + | i.e., <math>\theta_Q</math> is a modular form of weight <math>n/2</math> with a Dirichlet character w.r.t. <math>\Gamma_0(N)</math> |
− | |||
− | |||
==related items== | ==related items== | ||
* {{수학노트|url=리만_세타_함수}} | * {{수학노트|url=리만_세타_함수}} | ||
+ | |||
+ | |||
+ | ==references== | ||
+ | * Iwaniec, Topics in classical automorphic forms 174p. Equation (10.39) | ||
==computational resource== | ==computational resource== | ||
* https://drive.google.com/file/d/1EKNk3vLdkHiOFxTldZ5cwrSP6mab8-3D/view | * https://drive.google.com/file/d/1EKNk3vLdkHiOFxTldZ5cwrSP6mab8-3D/view | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7783550 Q7783550] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'theta'}, {'LOWER': 'function'}, {'LOWER': 'of'}, {'LOWER': 'a'}, {'LEMMA': 'lattice'}] |
2021년 2월 17일 (수) 02:02 기준 최신판
introduction
- Let \(Q\) be a positive definite integral quadratic form in \(n\) variables, i.e. \(Q(X) = X^t A_{Q} X\) for some positive definite half-integral symmetric square matrix \(A_{Q}\)
- \(r(Q, m)\) : number of \(X\in \Z^n\) such that \(Q(X) = m\)
- theta function of \(Q\)
\[ \theta_Q(\tau)=\sum_{m=0}^\infty r(Q, m)q^{m} = \sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{2\pi i\mathbf{n}^{t}A_{Q}\mathbf{n}} \]
- we can use the Riemann theta function to evaluate the above
\[ \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^n}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}^t\boldsymbol{\Omega}\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} \] \[ \theta_Q(\tau)=\Theta(0,2A_{Q}\tau) \]
- thm
- set \(\det Q := \det (2A_Q)\)
- level \(N\) of \(Q\) : smallest integer \(N\) such that \(N(2A_Q)^{-1}\) is twice of a half-integral matrix
Assume that \(n\) is even. For \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\Z)\) with \(c\equiv 0 \pmod N\), \[ \theta_Q\left(\frac{a\tau+b}{c\tau+d}\right) = \left(\frac{(-1)^{n/2}\det(Q)}{d}\right)(c\tau+d)^{n/2}\theta_Q(\tau) \] i.e., \(\theta_Q\) is a modular form of weight \(n/2\) with a Dirichlet character w.r.t. \(\Gamma_0(N)\)
references
- Iwaniec, Topics in classical automorphic forms 174p. Equation (10.39)
computational resource
메타데이터
위키데이터
- ID : Q7783550
Spacy 패턴 목록
- [{'LOWER': 'theta'}, {'LOWER': 'function'}, {'LOWER': 'of'}, {'LOWER': 'a'}, {'LEMMA': 'lattice'}]