"Induced sign representations and characters of Hecke algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 induced sign representations and characters로 바꾸었습니다.)
 
(사용자 3명의 중간 판 29개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30
 
* http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=55223&date=2012-04-30
  
 
+
  
 
* Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].
 
* Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].
  
 
+
  
 
+
  
<h5>induced sign characters</h5>
+
==induced sign characters==
  
 
* Unfortunately, the known formulas for induced sign characters of Sn are not among these.
 
* Unfortunately, the known formulas for induced sign characters of Sn are not among these.
17번째 줄: 17번째 줄:
 
* We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.
 
* We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.
  
 
+
  
 
+
  
<h5>history</h5>
+
Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}
  
 
+
2 For each coset of the form wW_{\lambda},
  
 
+
define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}
  
<h5>related items</h5>
+
If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)
  
 
+
3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}
  
 
+
4 this left multiplication can be expressed as matrix multiplication
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.
  
* http://en.wikipedia.org/wiki/
+
Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
  
 
+
the trace/character associated to representation \rho_{q}^{\lambda} are usually denoted by \epsilon_{q}^{\lambda}
  
<h5>books</h5>
+
Q. What is a nice formula for \epsilon_{q}^{\lambda}(T_{v}) ?  (open)
  
 
+
  
* [[2011년 books and articles]]
+
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
  
 
+
  
 
+
  
<h5>expositions</h5>
+
  
 
+
==related items==
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
  
 
+
==expositions==
  
* http://www.ams.org/mathscinet
+
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
+
  
 
+
[[분류:개인노트]]
 +
[[분류:quantum groups]]
 +
[[분류:math and physics]]
 +
[[분류:Hecke algebra]]
 +
[[분류:migrate]]
  
<h5>question and answers(Math Overflow)</h5>
+
==메타데이터==
 
+
===위키데이터===
* http://mathoverflow.net/search?q=
+
* ID : [https://www.wikidata.org/wiki/Q849798 Q849798]
* http://math.stackexchange.com/search?q=
+
===Spacy 패턴 목록===
* http://physics.stackexchange.com/search?q=
+
* [{'LOWER': 'knot'}, {'LEMMA': 'theory'}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>links</h5>
 
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 

2021년 2월 17일 (수) 01:57 기준 최신판

introduction


  • Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].



induced sign characters

  • Unfortunately, the known formulas for induced sign characters of Sn are not among these.
  • For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
  • We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.



Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n

1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}

2 For each coset of the form wW_{\lambda},

define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}

If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)

3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}

4 this left multiplication can be expressed as matrix multiplication

Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.

Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.


the trace/character associated to representation \rho_{q}^{\lambda} are usually denoted by \epsilon_{q}^{\lambda}

Q. What is a nice formula for \epsilon_{q}^{\lambda}(T_{v}) ? (open)






related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'knot'}, {'LEMMA': 'theory'}]