"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 4개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* [[Root Systems and Dynkin diagrams]]
 
* [[Root Systems and Dynkin diagrams]]
* <math>\rho</math> Weyl vector
+
* <math>\rho</math> Weyl vector
 
* Kac book 219p, 221p
 
* Kac book 219p, 221p
 
*  strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math>
 
*  strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math>
7번째 줄: 7번째 줄:
 
*  conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math>
 
*  conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math>
  
 
+
 
==articles==
 
==articles==
 
* Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
 
* Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
 
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
 
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br>
+
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]
**  John Burn, 2004<br>
+
**  John Burn, 2004
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7201015 Q7201015]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'plane'}, {'LEMMA': 'partition'}]

2021년 2월 17일 (수) 01:56 기준 최신판

introduction

  • Root Systems and Dynkin diagrams
  • \(\rho\) Weyl vector
  • Kac book 219p, 221p
  • strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
  • very strange formula
  • conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'plane'}, {'LEMMA': 'partition'}]