"Volume of hyperbolic 3-manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터) |
|||
(사용자 3명의 중간 판 37개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction== | |
− | * | + | * volume is an important invariant of hyperbolic 3-manifold |
+ | * big open problem [[Kashaev's volume conjecture]] | ||
+ | * three simple hyperbolic knots | ||
+ | ** <math>4_{1}</math> figure 8 knot | ||
+ | ** <math>5_{2}</math> | ||
+ | ** <math>6_{1}</math>, <math>6_{1}</math>, <math>6_{1}</math> | ||
+ | * A theorem of Jorgensen and Thurston implies that the volume of a hyperbolic 3-manifold is bounded below by a linear function of its Heegaard genus | ||
+ | |||
+ | |||
− | + | ==volume of figure eight knot complement== | |
+ | * [[Figure eight knot]] | ||
+ | |||
− | + | ||
− | + | ==other examples== | |
− | < | + | * <math>V(4_{1})=2.029883212819\cdots</math> |
+ | * <math>V(5_{2})=2.82812208\cdots</math> | ||
+ | * <math>V(6_{1})=3.163963228\cdots</math> | ||
− | + | ||
− | |||
− | + | ||
− | + | ==Chern-Simons invariant== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[Chern-Simons gauge theory and invariant|Chern-Simons theory]] | * [[Chern-Simons gauge theory and invariant|Chern-Simons theory]] | ||
− | + | ||
− | + | ||
− | + | ==Jones polynomial== | |
− | * | + | * |
− | + | ||
− | + | ||
− | + | ==links== | |
* [http://pythagoras0.springnote.com/pages/5098745 매듭이론 (knot theory)] | * [http://pythagoras0.springnote.com/pages/5098745 매듭이론 (knot theory)] | ||
− | + | ||
− | + | ||
− | + | ==history== | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | + | ||
− | + | ||
− | + | ==related items== | |
− | + | ||
− | + | ||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxX3ZsSC04OEUwU0k/edit | ||
− | + | ||
+ | ==encyclopedia== | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * [http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 http://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)] | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | |||
− | |||
− | + | ==expositions== | |
− | + | * Steven Finch, Volumes of Hyperbolic 3-Manifolds, September 5, 2004 http://algo.inria.fr/csolve/hyp.pdf | |
− | + | ||
− | + | ||
− | + | ==articles== | |
+ | * Purcell, Jessica S., and Alexander Zupan. “Independence of Volume and Genus <math>g</math> Bridge Numbers.” arXiv:1512.03869 [math], December 11, 2015. http://arxiv.org/abs/1512.03869. | ||
+ | * Le, Thang. “Growth of Homology Torsion in Finite Coverings and Hyperbolic Volume.” arXiv:1412.7758 [math], December 24, 2014. http://arxiv.org/abs/1412.7758. | ||
+ | * Alexander Goncharov, [http://www.jstor.org/stable/2646189 Volumes of Hyperbolic Manifolds and Mixed Tate Motives], 1999 | ||
+ | * Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102. | ||
+ | * Adams, C., Hildebrand, M. and Weeks, J., [http://www.jstor.org/stable/2001854 Hyperbolic invariants of knots and links], Trans. Amer.Math. Soc. 1 (1991), 1–56. | ||
+ | * Don Zagier, [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions], Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월 | ||
+ | * Borel, A. “Commensurability Classes and Volumes of Hyperbolic 3-Manifolds.” Ann. Sc. Norm. Super. Pisa8, 1–33 (1981) | ||
+ | http://www.numdam.org/numdam-bin/item?ma=211807&id=ASNSP_1981_4_8_1_1_0. | ||
− | |||
− | + | [[분류:개인노트]] | |
+ | [[분류:math and physics]] | ||
+ | [[분류:Number theory and physics]] | ||
+ | [[분류:migrate]] | ||
− | * [ | + | ==메타데이터== |
− | * [ | + | ===위키데이터=== |
− | * [ | + | * ID : [https://www.wikidata.org/wiki/Q168697 Q168697] |
− | * | + | ===Spacy 패턴 목록=== |
− | * | + | * [{'LOWER': 'figure'}, {'OP': '*'}, {'LOWER': 'eight'}, {'LEMMA': 'knot'}] |
+ | * [{'LOWER': 'listing'}, {'LOWER': "'s"}, {'LEMMA': 'knot'}] | ||
+ | * [{'LEMMA': '4_1'}] | ||
+ | * [{'LEMMA': '4₁'}] | ||
+ | * [{'LEMMA': '4a_1'}] | ||
+ | * [{'LOWER': 'figure'}, {'OP': '*'}, {'LEMMA': 'eight'}] |
2021년 2월 17일 (수) 01:53 기준 최신판
introduction
- volume is an important invariant of hyperbolic 3-manifold
- big open problem Kashaev's volume conjecture
- three simple hyperbolic knots
- \(4_{1}\) figure 8 knot
- \(5_{2}\)
- \(6_{1}\), \(6_{1}\), \(6_{1}\)
- A theorem of Jorgensen and Thurston implies that the volume of a hyperbolic 3-manifold is bounded below by a linear function of its Heegaard genus
volume of figure eight knot complement
other examples
- \(V(4_{1})=2.029883212819\cdots\)
- \(V(5_{2})=2.82812208\cdots\)
- \(V(6_{1})=3.163963228\cdots\)
Chern-Simons invariant
Jones polynomial
links
history
computational resource
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)
- http://en.wikipedia.org/wiki/
expositions
- Steven Finch, Volumes of Hyperbolic 3-Manifolds, September 5, 2004 http://algo.inria.fr/csolve/hyp.pdf
articles
- Purcell, Jessica S., and Alexander Zupan. “Independence of Volume and Genus \(g\) Bridge Numbers.” arXiv:1512.03869 [math], December 11, 2015. http://arxiv.org/abs/1512.03869.
- Le, Thang. “Growth of Homology Torsion in Finite Coverings and Hyperbolic Volume.” arXiv:1412.7758 [math], December 24, 2014. http://arxiv.org/abs/1412.7758.
- Alexander Goncharov, Volumes of Hyperbolic Manifolds and Mixed Tate Motives, 1999
- Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:10.1142/S0217751X96001905. http://arxiv.org/abs/hep-th/9505102.
- Adams, C., Hildebrand, M. and Weeks, J., Hyperbolic invariants of knots and links, Trans. Amer.Math. Soc. 1 (1991), 1–56.
- Don Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
- Borel, A. “Commensurability Classes and Volumes of Hyperbolic 3-Manifolds.” Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
http://www.numdam.org/numdam-bin/item?ma=211807&id=ASNSP_1981_4_8_1_1_0.
메타데이터
위키데이터
- ID : Q168697
Spacy 패턴 목록
- [{'LOWER': 'figure'}, {'OP': '*'}, {'LOWER': 'eight'}, {'LEMMA': 'knot'}]
- [{'LOWER': 'listing'}, {'LOWER': "'s"}, {'LEMMA': 'knot'}]
- [{'LEMMA': '4_1'}]
- [{'LEMMA': '4₁'}]
- [{'LEMMA': '4a_1'}]
- [{'LOWER': 'figure'}, {'OP': '*'}, {'LEMMA': 'eight'}]