"Bailey pair and lemma"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   | 
				|||
| (사용자 3명의 중간 판 22개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==related items==  | |
| + | * [[manufacturing matrices from lower ranks]]  | ||
| + | * [[q-analogue of summation formulas]]  | ||
| + | * [[Rogers-Ramanujan continued fraction]]  | ||
| − | + | ||
| − | + | ||
| − | + | ==articles==  | |
| + | * Patkowski, Alexander E. ‘A Note on Some Partitions Related to Ternary Quadratic Forms’. arXiv:1503.08516 [math], 29 March 2015. http://arxiv.org/abs/1503.08516.  | ||
| + | *  A. Schilling, S.O. Warnaar [http://arxiv.org/abs/math.QA/9909044 A generalization of the q-Saalschutz sum and the Burge transform], 2009  | ||
| + | * Mc Laughlin [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities], 2008  | ||
| + | * [http://www.springerlink.com/content/478544t414l26v05/ Andrews–Gordon type identities from combinations of Virasoro characters]  | ||
| + | **  Boris Feigin, Omar Foda, Trevor Welsh, 2007  | ||
| + | * [http://www.combinatorics.org/Volume_10/PDF/v10i1r13.pdf Finite Rogers-Ramanujan Type Identities]  | ||
| + | **  Andrew V. Sills, 2003  | ||
| + | * [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]  | ||
| + | **  Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)  | ||
| − | + | * [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]  | |
| − | + | ** George E. Andrews, Pacific J. Math.  Volume 114, Number 2 (1984), 267-283.  | |
| − | + | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]  | ||
| − | ** George E. Andrews, Pacific J. Math.  | ||
| − | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function]  | ||
** J. H. Loxton, 1984  | ** J. H. Loxton, 1984  | ||
| − | * [http://dx.doi.org/10.1112%2Fjlms%2Fs1-37.1.504 Wilfrid Norman Bailey]  | + | * [http://dx.doi.org/10.1112%2Fjlms%2Fs1-37.1.504 Wilfrid Norman Bailey]  | 
| − | **  Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512  | + | **  Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512  | 
| − | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]  | + | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]  | 
| − | **  Slater, L. J. (1952),   | + | **  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167  | 
| − | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]  | + | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]  | 
| − | **  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475  | + | **  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475  | 
| − | * [http://plms.oxfordjournals.org/cgi/reprint/s2-50/1/1.pdf Identities of Rogers-Ramanujan type]  | + | * [http://plms.oxfordjournals.org/cgi/reprint/s2-50/1/1.pdf Identities of Rogers-Ramanujan type]  | 
| − | **  Bailey,  | + | **  Bailey, 1944  | 
| − | + | [[분류:math and physics]]  | |
| − | + | [[분류:migrate]]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * [  | + | ==메타데이터==  | 
| − | * [  | + | ===위키데이터===  | 
| − | + | * ID :  [https://www.wikidata.org/wiki/Q4848398 Q4848398]  | |
| − | + | ===Spacy 패턴 목록===  | |
| − | + | * [{'LOWER': 'bailey'}, {'LEMMA': 'pair'}]  | |
2021년 2월 17일 (수) 01:50 기준 최신판
- manufacturing matrices from lower ranks
 - q-analogue of summation formulas
 - Rogers-Ramanujan continued fraction
 
 
 
articles
- Patkowski, Alexander E. ‘A Note on Some Partitions Related to Ternary Quadratic Forms’. arXiv:1503.08516 [math], 29 March 2015. http://arxiv.org/abs/1503.08516.
 - A. Schilling, S.O. Warnaar A generalization of the q-Saalschutz sum and the Burge transform, 2009
 - Mc Laughlin Rogers-Ramanujan-Slater Type identities, 2008
 - Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
 
 - Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
 
 - Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
 
 
- Multiple series Rogers-Ramanujan type identities.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
 
 - Special values of the dilogarithm function
- J. H. Loxton, 1984
 
 - Wilfrid Norman Bailey
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
 
 - Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
 
 - A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
 
 - Identities of Rogers-Ramanujan type
- Bailey, 1944
 
 
메타데이터
위키데이터
- ID : Q4848398
 
Spacy 패턴 목록
- [{'LOWER': 'bailey'}, {'LEMMA': 'pair'}]