"Simple exclusion process"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 3명의 중간 판 79개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * example of a non-equilibrium model in statistical mechanics | ||
+ | * Gibbs-Boltzmann formation is not valid | ||
+ | * exclusion rule forbids to have more than one particle per site | ||
+ | * The simple exclusion process is a model of a lattice gas with an exclusion principle | ||
+ | * diffusion | ||
+ | * introduced in 1960's in biology for RNA | ||
+ | * analysed in 1990's | ||
+ | |||
+ | ==formulation== | ||
+ | * a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty. | ||
+ | * special cases | ||
+ | ** symmetric exclusion process <math>p=q=1/2</math> | ||
+ | ** asymmetric simple exclusion process (ASEP) <math>p\neq q</math> | ||
+ | ** totally asymmetric exclusion process (TASEP) <math>p=1,q=0</math> | ||
+ | * for example, <math>\delta=\gamma=q=0</math> model for traffic flow | ||
+ | * particles jumping from left ro right or from right ro left with given probabilities <math>p</math> and <math>q</math> (<math>p+q=1</math>) | ||
+ | ===dynamical rules=== | ||
+ | * <math>P(C,t)</math> be the probability for configuration <math>C</math> at time <math>t</math> | ||
+ | * <math>P(C,t)</math> is a solution of the master equation | ||
+ | :<math> | ||
+ | \frac{\partial P(C,t)}{\partial t}=\sum_{C':C'\neq C}P(C',t)W(C'\to C)-\left(\sum_{C':C'\neq C}W(C\to C')\right)P(C,t) | ||
+ | </math> | ||
+ | * [[Master equation for asymmetric simple exclusion process]] | ||
+ | |||
+ | ==key concepts== | ||
+ | ===spin chain=== | ||
+ | * master equation and the formalism using the Hamiltonian of the spin chain | ||
+ | * [[Heisenberg spin chain model]] can be viewed as a exclusion process (time evolution) | ||
+ | |||
+ | |||
+ | ===critical exponent=== | ||
+ | * relaxation time <math>\tau</math> towards equilibrium | ||
+ | * spatial correlation length <math>\xi</math> | ||
+ | * dynamical critical exponent <math>z</math> given by <math>\tau \sim \xi^z</math> | ||
+ | * for one-dimensional quantum spin chains <math>\tau \sim L^z</math> where <math>L</math> is the length of the spin chain | ||
+ | ===Bethe ansatz=== | ||
+ | <math>\tau</math> is dominated by the eigenvalue of the Hamiltonian with the smallest real part | ||
+ | * thus the finite size analysis of the Hamiltonian gives | ||
+ | :<math> | ||
+ | \Re(E_1)\sim \frac{1}{L^z} | ||
+ | </math> | ||
+ | * so we need to compute <math>E_1</math> to get <math>z</math> | ||
+ | * this is where the [[Bethe ansatz]] comes in | ||
+ | |||
+ | ==two species model== | ||
+ | * two species asymmetric diffusion model that describes two species and vacancies diffusing asymmetrically on a one-dimensional lattice | ||
+ | * use algebraic Bethe Ansatz | ||
+ | * find the finite-size scaling behavior of the lowest lying eigenstates of the quantum Hamiltonian describing the model and compute the dynamical critical exponent | ||
+ | * [[Multi-species asymmetric simple exclusion process]] | ||
+ | |||
+ | ==memo== | ||
+ | * http://www.math.purdue.edu/~ebkaufma/publications.html | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[Random matrix]] | ||
+ | * [[Random processes]] | ||
+ | * [[Limit shapes in random processes]] | ||
+ | * [[KPZ equation]] | ||
+ | * [[Heisenberg spin chain model]] | ||
+ | * [[Bethe ansatz]] | ||
+ | * [[Finite size effect]] | ||
+ | * [[Tetrahedron equation]] | ||
+ | |||
+ | ==encyclopedia== | ||
+ | * http://en.wikipedia.org/wiki/Asymmetric_simple_exclusion_process | ||
+ | |||
+ | ==expositions== | ||
+ | * Mallick, Kirone. ‘The Exclusion Process: A Paradigm for Non-Equilibrium Behaviour’. arXiv:1412.6258 [cond-Mat], 19 December 2014. http://arxiv.org/abs/1412.6258. | ||
+ | * Kaufmann, [https://docs.google.com/file/d/0B8XXo8Tve1cxemM0a05MbDFuYkU/edit Bethe ansatz for two species totally asymmetric diffusion] | ||
+ | * Golinelli, Olivier, and Kirone Mallick. 2006. The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. Journal of Physics A: Mathematical and General 39, no. 41 (10): 12679-12705. doi:[http://dx.doi.org/10.1088/0305-4470/39/41/S03 10.1088/0305-4470/39/41/S03]. | ||
+ | |||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Sylvain Prolhac, Extrapolation methods and Bethe ansatz for the asymmetric exclusion process, arXiv:1604.08843 [cond-mat.stat-mech], April 29 2016, http://arxiv.org/abs/1604.08843 | ||
+ | * Sylvain Prolhac, Finite-time fluctuations for the totally asymmetric exclusion process, 10.1103/PhysRevLett.116.090601, http://dx.doi.org/10.1103/PhysRevLett.116.090601, Phys. Rev. Lett. 116 (2016) 090601, http://arxiv.org/abs/1511.04064v3 | ||
+ | * Cantini, Luigi, Jan de Gier, and Michael Wheeler. “Matrix Product and Sum Rule for Macdonald Polynomials.” arXiv:1602.04392 [math-Ph], February 13, 2016. http://arxiv.org/abs/1602.04392. | ||
+ | * Sato, Jun, and Katsuhiro Nishinari. “Exact Relaxation Dynamics of the ASEP with Langmuir Kinetics on a Ring.” arXiv:1601.02651 [cond-Mat, Physics:math-Ph, Physics:nlin], January 7, 2016. http://arxiv.org/abs/1601.02651. | ||
+ | * Kuniba, Atsuo, Shouya Maruyama, and Masato Okado. “Multispecies Totally Asymmetric Zero Range Process: I. Multiline Process and Combinatorial <math>R</math>.” arXiv:1511.09168 [cond-Mat, Physics:math-Ph, Physics:nlin], November 30, 2015. http://arxiv.org/abs/1511.09168. | ||
+ | * Crampe, N., L. Frappat, E. Ragoucy, and M. Vanicat. “A New Braid-like Algebra for Baxterisation.” arXiv:1509.05516 [math-Ph], September 18, 2015. http://arxiv.org/abs/1509.05516. | ||
+ | * Kuniba, Atsuo, Shouya Maruyama, and Masato Okado. “Multispecies TASEP and Combinatorial <math>R</math>.” arXiv:1506.04490 [math-Ph, Physics:nlin], June 15, 2015. http://arxiv.org/abs/1506.04490. | ||
+ | * Ortmann, Janosch, Jeremy Quastel, and Daniel Remenik. “A Pfaffian Representation for Flat ASEP.” arXiv:1501.05626 [math-Ph], January 22, 2015. http://arxiv.org/abs/1501.05626. | ||
+ | * Barraquand, Guillaume, and Ivan Corwin. “The <math>q</math>-Hahn Asymmetric Exclusion Process.” arXiv:1501.03445 [cond-Mat, Physics:math-Ph], January 14, 2015. http://arxiv.org/abs/1501.03445. | ||
+ | * Crampe, Nicolas. “Algebraic Bethe Ansatz for the Totally Asymmetric Simple Exclusion Process with Boundaries.” arXiv:1411.7954 [cond-Mat, Physics:math-Ph, Physics:nlin], November 28, 2014. http://arxiv.org/abs/1411.7954. | ||
+ | * Prolhac, Sylvain. “Asymptotics for the Norm of Bethe Eigenstates in the Periodic Totally Asymmetric Exclusion Process.” arXiv:1411.7008 [cond-Mat, Physics:math-Ph, Physics:nlin], November 25, 2014. http://arxiv.org/abs/1411.7008. | ||
+ | |||
+ | ==articles 2== | ||
+ | ===single species model=== | ||
+ | * Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:[http://dx.doi.org/10.1007/s00220-009-0761-0 10.1007/s00220-009-0761-0]. | ||
+ | * '''[TW2007]'''Tracy, Craig A., and Harold Widom. 2008. “Integral Formulas for the Asymmetric Simple Exclusion Process.” Communications in Mathematical Physics 279 (3) (May 1): 815–844. doi:[http://dx.doi.org/10.1007/s00220-008-0443-3 10.1007/s00220-008-0443-3] | ||
+ | * Golinelli, O., and K. Mallick. 2007. “Family of Commuting Operators for the Totally Asymmetric Exclusion Process.” Journal of Physics A: Mathematical and Theoretical 40 (22) (June 1): 5795. doi:http://dx.doi.org/10.1088/1751-8113/40/22/003. | ||
+ | * Derrida, B. “An Exactly Soluble Non-Equilibrium System: The Asymmetric Simple Exclusion Process.” Physics Reports 301, no. 1–3 (July 1, 1998): 65–83. doi:10.1016/S0370-1573(98)00006-4. | ||
+ | * Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:[http://dx.doi.org/10.1007/BF02508478 10.1007/BF02508478]. | ||
+ | * Gwa, Leh-Hun, and Herbert Spohn. 1992. “Bethe Solution for the Dynamical-scaling Exponent of the Noisy Burgers Equation.” Physical Review A 46 (2) (July 15): 844–854. doi:http://dx.doi.org/10.1103/PhysRevA.46.844. | ||
+ | |||
+ | ===random growth model=== | ||
+ | * Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:[http://dx.doi.org/10.1007/s002200050027 10.1007/s002200050027]. | ||
+ | |||
+ | |||
+ | [[분류:개인노트]] | ||
+ | [[분류:integrable systems]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q297612 Q297612] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'ASEP'}] | ||
+ | * [{'LOWER': 'asymmetric'}, {'LOWER': 'simple'}, {'LOWER': 'exclusion'}, {'LEMMA': 'process'}] |
2021년 2월 17일 (수) 01:42 기준 최신판
introduction
- example of a non-equilibrium model in statistical mechanics
- Gibbs-Boltzmann formation is not valid
- exclusion rule forbids to have more than one particle per site
- The simple exclusion process is a model of a lattice gas with an exclusion principle
- diffusion
- introduced in 1960's in biology for RNA
- analysed in 1990's
formulation
- a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
- special cases
- symmetric exclusion process \(p=q=1/2\)
- asymmetric simple exclusion process (ASEP) \(p\neq q\)
- totally asymmetric exclusion process (TASEP) \(p=1,q=0\)
- for example, \(\delta=\gamma=q=0\) model for traffic flow
- particles jumping from left ro right or from right ro left with given probabilities \(p\) and \(q\) (\(p+q=1\))
dynamical rules
- \(P(C,t)\) be the probability for configuration \(C\) at time \(t\)
- \(P(C,t)\) is a solution of the master equation
\[ \frac{\partial P(C,t)}{\partial t}=\sum_{C':C'\neq C}P(C',t)W(C'\to C)-\left(\sum_{C':C'\neq C}W(C\to C')\right)P(C,t) \]
key concepts
spin chain
- master equation and the formalism using the Hamiltonian of the spin chain
- Heisenberg spin chain model can be viewed as a exclusion process (time evolution)
critical exponent
- relaxation time \(\tau\) towards equilibrium
- spatial correlation length \(\xi\)
- dynamical critical exponent \(z\) given by \(\tau \sim \xi^z\)
- for one-dimensional quantum spin chains \(\tau \sim L^z\) where \(L\) is the length of the spin chain
Bethe ansatz
\(\tau\) is dominated by the eigenvalue of the Hamiltonian with the smallest real part
- thus the finite size analysis of the Hamiltonian gives
\[ \Re(E_1)\sim \frac{1}{L^z} \]
- so we need to compute \(E_1\) to get \(z\)
- this is where the Bethe ansatz comes in
two species model
- two species asymmetric diffusion model that describes two species and vacancies diffusing asymmetrically on a one-dimensional lattice
- use algebraic Bethe Ansatz
- find the finite-size scaling behavior of the lowest lying eigenstates of the quantum Hamiltonian describing the model and compute the dynamical critical exponent
- Multi-species asymmetric simple exclusion process
memo
- Random matrix
- Random processes
- Limit shapes in random processes
- KPZ equation
- Heisenberg spin chain model
- Bethe ansatz
- Finite size effect
- Tetrahedron equation
encyclopedia
expositions
- Mallick, Kirone. ‘The Exclusion Process: A Paradigm for Non-Equilibrium Behaviour’. arXiv:1412.6258 [cond-Mat], 19 December 2014. http://arxiv.org/abs/1412.6258.
- Kaufmann, Bethe ansatz for two species totally asymmetric diffusion
- Golinelli, Olivier, and Kirone Mallick. 2006. The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. Journal of Physics A: Mathematical and General 39, no. 41 (10): 12679-12705. doi:10.1088/0305-4470/39/41/S03.
articles
- Sylvain Prolhac, Extrapolation methods and Bethe ansatz for the asymmetric exclusion process, arXiv:1604.08843 [cond-mat.stat-mech], April 29 2016, http://arxiv.org/abs/1604.08843
- Sylvain Prolhac, Finite-time fluctuations for the totally asymmetric exclusion process, 10.1103/PhysRevLett.116.090601, http://dx.doi.org/10.1103/PhysRevLett.116.090601, Phys. Rev. Lett. 116 (2016) 090601, http://arxiv.org/abs/1511.04064v3
- Cantini, Luigi, Jan de Gier, and Michael Wheeler. “Matrix Product and Sum Rule for Macdonald Polynomials.” arXiv:1602.04392 [math-Ph], February 13, 2016. http://arxiv.org/abs/1602.04392.
- Sato, Jun, and Katsuhiro Nishinari. “Exact Relaxation Dynamics of the ASEP with Langmuir Kinetics on a Ring.” arXiv:1601.02651 [cond-Mat, Physics:math-Ph, Physics:nlin], January 7, 2016. http://arxiv.org/abs/1601.02651.
- Kuniba, Atsuo, Shouya Maruyama, and Masato Okado. “Multispecies Totally Asymmetric Zero Range Process: I. Multiline Process and Combinatorial \(R\).” arXiv:1511.09168 [cond-Mat, Physics:math-Ph, Physics:nlin], November 30, 2015. http://arxiv.org/abs/1511.09168.
- Crampe, N., L. Frappat, E. Ragoucy, and M. Vanicat. “A New Braid-like Algebra for Baxterisation.” arXiv:1509.05516 [math-Ph], September 18, 2015. http://arxiv.org/abs/1509.05516.
- Kuniba, Atsuo, Shouya Maruyama, and Masato Okado. “Multispecies TASEP and Combinatorial \(R\).” arXiv:1506.04490 [math-Ph, Physics:nlin], June 15, 2015. http://arxiv.org/abs/1506.04490.
- Ortmann, Janosch, Jeremy Quastel, and Daniel Remenik. “A Pfaffian Representation for Flat ASEP.” arXiv:1501.05626 [math-Ph], January 22, 2015. http://arxiv.org/abs/1501.05626.
- Barraquand, Guillaume, and Ivan Corwin. “The \(q\)-Hahn Asymmetric Exclusion Process.” arXiv:1501.03445 [cond-Mat, Physics:math-Ph], January 14, 2015. http://arxiv.org/abs/1501.03445.
- Crampe, Nicolas. “Algebraic Bethe Ansatz for the Totally Asymmetric Simple Exclusion Process with Boundaries.” arXiv:1411.7954 [cond-Mat, Physics:math-Ph, Physics:nlin], November 28, 2014. http://arxiv.org/abs/1411.7954.
- Prolhac, Sylvain. “Asymptotics for the Norm of Bethe Eigenstates in the Periodic Totally Asymmetric Exclusion Process.” arXiv:1411.7008 [cond-Mat, Physics:math-Ph, Physics:nlin], November 25, 2014. http://arxiv.org/abs/1411.7008.
articles 2
single species model
- Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:10.1007/s00220-009-0761-0.
- [TW2007]Tracy, Craig A., and Harold Widom. 2008. “Integral Formulas for the Asymmetric Simple Exclusion Process.” Communications in Mathematical Physics 279 (3) (May 1): 815–844. doi:10.1007/s00220-008-0443-3
- Golinelli, O., and K. Mallick. 2007. “Family of Commuting Operators for the Totally Asymmetric Exclusion Process.” Journal of Physics A: Mathematical and Theoretical 40 (22) (June 1): 5795. doi:http://dx.doi.org/10.1088/1751-8113/40/22/003.
- Derrida, B. “An Exactly Soluble Non-Equilibrium System: The Asymmetric Simple Exclusion Process.” Physics Reports 301, no. 1–3 (July 1, 1998): 65–83. doi:10.1016/S0370-1573(98)00006-4.
- Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:10.1007/BF02508478.
- Gwa, Leh-Hun, and Herbert Spohn. 1992. “Bethe Solution for the Dynamical-scaling Exponent of the Noisy Burgers Equation.” Physical Review A 46 (2) (July 15): 844–854. doi:http://dx.doi.org/10.1103/PhysRevA.46.844.
random growth model
- Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:10.1007/s002200050027.
메타데이터
위키데이터
- ID : Q297612
Spacy 패턴 목록
- [{'LEMMA': 'ASEP'}]
- [{'LOWER': 'asymmetric'}, {'LOWER': 'simple'}, {'LOWER': 'exclusion'}, {'LEMMA': 'process'}]