"Minors and plucker relations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm<br> Minors[mat] // MatrixForm<br> Minors[mat, 1] // MatrixForm<br> Minors[mat, 2] // MatrixForm<br> Minors[mat, 3] // MatrixForm
+
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm Minors[mat] // MatrixForm Minors[mat, 1] // MatrixForm Minors[mat, 2] // MatrixForm Minors[mat, 3] // MatrixForm
# Simplify[Subscript[a, 1,<br>    3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +<br>      Subscript[a, 1, 1] Subscript[a, 2, 2]) +<br>   Subscript[a, 1,<br>    1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +<br>      Subscript[a, 1, 2] Subscript[a, 2, 3])]
+
# Simplify[Subscript[a, 1,   3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +     Subscript[a, 1, 1] Subscript[a, 2, 2]) +   Subscript[a, 1,   1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +     Subscript[a, 1, 2] Subscript[a, 2, 3])]
  
 
+
  
 
+
  
 
+
  
 
+
  
<h5>3-term Plucker relation (Ptolemy relation)</h5>
+
==3-term Plucker relation (Ptolemy relation)==
  
<math>\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}</math>
+
* <math>\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}</math>
 +
* <math>\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}</math>
  
<math>\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}</math>
+
# T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],    Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],    Subscript[a, 2, 3], Subscript[a, 2, 4]}} Minor[i_, j_] := Det[{Transpose[T][[i]], Transpose[T][[j]]}] Minor[1, 2]
 +
# Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]] Simplify[Minor[1, 3] Minor[2, 4]]
  
# T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],<br>    Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],<br>    Subscript[a, 2, 3], Subscript[a, 2, 4]}}<br> Minor[i_, j_] := Det[{Transpose[T][[i]], Transpose[T][[j]]}]<br> Minor[1, 2]
+
# Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]]<br> Simplify[Minor[1, 3] Minor[2, 4]]
 
  
 
+
  
 
+
==Plucker relations==
  
<h5>Plucker relations</h5>
+
* <math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
 
 
<math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
 
  
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}
  
 
+
 
 
 
 
  
<h5>Plucker coordinates of a Grassmannian</h5>
+
  
 
+
==Plucker coordinates of a Grassmannian==
  
 
+
  
 
+
  
<h5>memo</h5>
+
==memo==
  
[http://www.math.msu.edu/%7Emagyar/papers/MinorIdentities.pdf http://www.math.msu.edu/~magyar/papers/MinorIdentities.pdf]
+
* [http://www.math.msu.edu/%7Emagyar/papers/MinorIdentities.pdf http://www.math.msu.edu/~magyar/papers/MinorIdentities.pdf]
 +
* http://www.ams.org/journals/proc/2008-136-01/S0002-9939-07-09122-8/S0002-9939-07-09122-8.pdf
 +
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
http://www.ams.org/journals/proc/2008-136-01/S0002-9939-07-09122-8/S0002-9939-07-09122-8.pdf
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2996684 Q2996684]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'plücker'}, {'LEMMA': 'embedding'}]

2021년 2월 17일 (수) 01:42 기준 최신판

introduction

  1. (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm Minors[mat] // MatrixForm Minors[mat, 1] // MatrixForm Minors[mat, 2] // MatrixForm Minors[mat, 3] // MatrixForm
  2. Simplify[Subscript[a, 1, 3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] + Subscript[a, 1, 1] Subscript[a, 2, 2]) + Subscript[a, 1, 1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] + Subscript[a, 1, 2] Subscript[a, 2, 3])]





3-term Plucker relation (Ptolemy relation)

  • \(\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}\)
  • \(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)
  1. T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3], Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2], Subscript[a, 2, 3], Subscript[a, 2, 4]}} Minor[i_, j_] := Det[{Transpose[T]i, Transpose[T]j}] Minor[1, 2]
  2. Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]] Simplify[Minor[1, 3] Minor[2, 4]]



Plucker relations

  • \(\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}\)
  1. \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}



Plucker coordinates of a Grassmannian

memo

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'plücker'}, {'LEMMA': 'embedding'}]