"Virasoro singular vectors"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 3개는 보이지 않습니다)
10번째 줄: 10번째 줄:
  
 
==Fock space representations of Heisenberg algebra and Virasoro algebra==
 
==Fock space representations of Heisenberg algebra and Virasoro algebra==
* set $\alpha_0=\frac{\beta}{2}-\frac{1}{\beta}$, $\alpha_{r,s}=(1+r)\frac{\beta}{2}-(1+s)\frac{1}{\beta}$ and $t=\frac{\beta^2}{2}$ for $\beta\in \mathbb{C}$ and $r,s\in \mathbb{Z}$
+
* set <math>\alpha_0=\frac{\beta}{2}-\frac{1}{\beta}</math>, <math>\alpha_{r,s}=(1+r)\frac{\beta}{2}-(1+s)\frac{1}{\beta}</math> and <math>t=\frac{\beta^2}{2}</math> for <math>\beta\in \mathbb{C}</math> and <math>r,s\in \mathbb{Z}</math>
 
* [[Heisenberg group and Heisenberg algebra|infinite dimensional Heisenberg algebra]] generated by
 
* [[Heisenberg group and Heisenberg algebra|infinite dimensional Heisenberg algebra]] generated by
$$
+
:<math>
 
[a_m,a_n]=n\delta_{m,-n}
 
[a_m,a_n]=n\delta_{m,-n}
$$
+
</math>
* we define $F_{\alpha}, \alpha\in \mathbb{C}$ a representation of the Heisenberg algebra defined by the generator $|\alpha \rangle$ and the relations
+
* we define <math>F_{\alpha}, \alpha\in \mathbb{C}</math> a representation of the Heisenberg algebra defined by the generator <math>|\alpha \rangle</math> and the relations
$$
+
:<math>
 
a_n|\alpha \rangle=0, \, n>0 \\
 
a_n|\alpha \rangle=0, \, n>0 \\
 
a_0|\alpha \rangle=\alpha |\alpha \rangle
 
a_0|\alpha \rangle=\alpha |\alpha \rangle
$$
+
</math>
 
===Virasoro algebra===
 
===Virasoro algebra===
 
* if we put
 
* if we put
$$
+
:<math>
 
L_n=\frac{1}{2}\sum_{m\in \mathbb{Z}}:a_{n-m}a_m:-\alpha_0(n+1)a_n
 
L_n=\frac{1}{2}\sum_{m\in \mathbb{Z}}:a_{n-m}a_m:-\alpha_0(n+1)a_n
$$
+
</math>
for $n\in \mathbb{Z}$
+
for <math>n\in \mathbb{Z}</math>
 
* we obtain the relations
 
* we obtain the relations
$$
+
:<math>
 
[L_n,a_m]=-ma_{n+m}-\alpha_0n(n+1)\delta_{n+m,0}
 
[L_n,a_m]=-ma_{n+m}-\alpha_0n(n+1)\delta_{n+m,0}
$$
+
</math>
 
and
 
and
$$
+
:<math>
 
[L_n,L_m]=(n-m)L_{m+n}+\frac{c}{12}(n^3-n)\delta_{n+m,0}
 
[L_n,L_m]=(n-m)L_{m+n}+\frac{c}{12}(n^3-n)\delta_{n+m,0}
$$
+
</math>
* thus the Virasoro algebra acts on $F_{\alpha}$ with the central charge $c=1-12\alpha_0^2=13-6(t+1/t)$
+
* thus the Virasoro algebra acts on <math>F_{\alpha}</math> with the central charge <math>c=1-12\alpha_0^2=13-6(t+1/t)</math>
 
* we also have
 
* we also have
$$
+
:<math>
 
L_n|\alpha \rangle=0\, (n\in \mathbb{Z}_{> 0})
 
L_n|\alpha \rangle=0\, (n\in \mathbb{Z}_{> 0})
$$
+
</math>
 
and
 
and
$$
+
:<math>
 
L_0|\alpha \rangle=h_{\alpha}|\alpha \rangle
 
L_0|\alpha \rangle=h_{\alpha}|\alpha \rangle
$$
+
</math>
with $h_{\alpha}=\frac{\alpha^2}{2}-\alpha_0\alpha$
+
with <math>h_{\alpha}=\frac{\alpha^2}{2}-\alpha_0\alpha</math>
  
 
==singular vectors in Fock space representations==
 
==singular vectors in Fock space representations==
 
;def
 
;def
An element $|\chi \rangle\in F_{\alpha}$ is called the singular vectors of degree $N\in \mathbb{Z}$ if
+
An element <math>|\chi \rangle\in F_{\alpha}</math> is called the singular vectors of degree <math>N\in \mathbb{Z}</math> if
$$
+
:<math>
 
L_n|\chi \rangle=0\, (n\in \mathbb{Z}_{> 0})
 
L_n|\chi \rangle=0\, (n\in \mathbb{Z}_{> 0})
$$
+
</math>
 
and
 
and
$$
+
:<math>
 
L_0|\chi \rangle=(h_{\alpha}+N)|\chi \rangle
 
L_0|\chi \rangle=(h_{\alpha}+N)|\chi \rangle
$$
+
</math>
 
;thm
 
;thm
If $\alpha\notin \{\alpha_{r,s}:r,s\in \mathbb{Z}_{>0} \text{or } r,s\in \mathbb{Z}_{<0} \}$, $F_{\alpha}$ is irreducible.
+
If <math>\alpha\notin \{\alpha_{r,s}:r,s\in \mathbb{Z}_{>0} \text{or } r,s\in \mathbb{Z}_{<0} \}</math>, <math>F_{\alpha}</math> is irreducible.
  
If $\alpha=\alpha_{r,s}$ for some $r,s\in \mathbb{Z}_{>0}$, there exists a unique singular vector $|\chi_{r,s}\rangle \in F_{\alpha}$ of degree $N=rs$ up to a constant factor.
+
If <math>\alpha=\alpha_{r,s}</math> for some <math>r,s\in \mathbb{Z}_{>0}</math>, there exists a unique singular vector <math>|\chi_{r,s}\rangle \in F_{\alpha}</math> of degree <math>N=rs</math> up to a constant factor.
  
  
  
 
===examples===
 
===examples===
* $|\chi_{1,1}\rangle=a_{-1}|\alpha_{1,1}\rangle$
+
* <math>|\chi_{1,1}\rangle=a_{-1}|\alpha_{1,1}\rangle</math>
* $|\chi_{1,2}\rangle=(a_{-2}+\sqrt{2t}a_{-1}^2)|\alpha_{1,2}\rangle$
+
* <math>|\chi_{1,2}\rangle=(a_{-2}+\sqrt{2t}a_{-1}^2)|\alpha_{1,2}\rangle</math>
* $|\chi_{2,2}\rangle=(a_{-4}+\frac{4\sqrt{2t}}{1-t}a_{-3}a_{-1}-2\frac{1+t+t^2}{\sqrt{2t}(1-t)}a_{-2}^2-4a_{-2}a_{-1}^2-\frac{2\sqrt{2t}}{1-t}a_{-1}^4)|\alpha_{2,2}\rangle$
+
* <math>|\chi_{2,2}\rangle=(a_{-4}+\frac{4\sqrt{2t}}{1-t}a_{-3}a_{-1}-2\frac{1+t+t^2}{\sqrt{2t}(1-t)}a_{-2}^2-4a_{-2}a_{-1}^2-\frac{2\sqrt{2t}}{1-t}a_{-1}^4)|\alpha_{2,2}\rangle</math>
* if we use the substitutions $a_{-n}\mapsto \sqrt{\frac{t}{2}}p_n,\, |\alpha_{r,s}\rangle\mapsto 1$, we get the Jack symmetric polynomials
+
* if we use the substitutions <math>a_{-n}\mapsto \sqrt{\frac{t}{2}}p_n,\, |\alpha_{r,s}\rangle\mapsto 1</math>, we get the Jack symmetric polynomials
  
 
;thm [Mimachi-Yamada]
 
;thm [Mimachi-Yamada]
The Virasoro singular vector $|\chi_{r,s}\rangle$ has one-to-one correspondence with the Jack symmetric polynomial $J_{\{s^r\}}(x;t)$ with the rectangular diagram $\{s^r\}$
+
The Virasoro singular vector <math>|\chi_{r,s}\rangle</math> has one-to-one correspondence with the Jack symmetric polynomial <math>J_{\{s^r\}}(x;t)</math> with the rectangular diagram <math>\{s^r\}</math>
  
 
==computational resource==
 
==computational resource==
76번째 줄: 76번째 줄:
  
 
==articles==
 
==articles==
 +
* Schechtman, Vadim, and Alexander Varchenko. “Rational Differential Forms on Line and Singular Vectors in Verma Modules over <math>\widehat {sl}_2</math>.” arXiv:1511.09014 [math-Ph], November 29, 2015. http://arxiv.org/abs/1511.09014.
 +
* Yanagida, Shintarou. “Singular Vectors of <math>N=1</math> Super Virasoro Algebra via Uglov Symmetric Functions.” arXiv:1508.06036 [math-Ph], August 25, 2015. http://arxiv.org/abs/1508.06036.
 
* Kirillov, Anatol N. ‘Notes on Schubert, Grothendieck and Key Polynomials’. arXiv:1501.07337 [math], 28 January 2015. http://arxiv.org/abs/1501.07337.
 
* Kirillov, Anatol N. ‘Notes on Schubert, Grothendieck and Key Polynomials’. arXiv:1501.07337 [math], 28 January 2015. http://arxiv.org/abs/1501.07337.
 
* Ridout, David, and Simon Wood. “From Jack Polynomials to Minimal Model Spectra.” arXiv:1409.4847 [hep-Th], September 16, 2014. http://arxiv.org/abs/1409.4847.
 
* Ridout, David, and Simon Wood. “From Jack Polynomials to Minimal Model Spectra.” arXiv:1409.4847 [hep-Th], September 16, 2014. http://arxiv.org/abs/1409.4847.
90번째 줄: 92번째 줄:
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 08:50 기준 최신판

introduction

Verma modules


Fock space representations of Heisenberg algebra and Virasoro algebra

  • set \(\alpha_0=\frac{\beta}{2}-\frac{1}{\beta}\), \(\alpha_{r,s}=(1+r)\frac{\beta}{2}-(1+s)\frac{1}{\beta}\) and \(t=\frac{\beta^2}{2}\) for \(\beta\in \mathbb{C}\) and \(r,s\in \mathbb{Z}\)
  • infinite dimensional Heisenberg algebra generated by

\[ [a_m,a_n]=n\delta_{m,-n} \]

  • we define \(F_{\alpha}, \alpha\in \mathbb{C}\) a representation of the Heisenberg algebra defined by the generator \(|\alpha \rangle\) and the relations

\[ a_n|\alpha \rangle=0, \, n>0 \\ a_0|\alpha \rangle=\alpha |\alpha \rangle \]

Virasoro algebra

  • if we put

\[ L_n=\frac{1}{2}\sum_{m\in \mathbb{Z}}:a_{n-m}a_m:-\alpha_0(n+1)a_n \] for \(n\in \mathbb{Z}\)

  • we obtain the relations

\[ [L_n,a_m]=-ma_{n+m}-\alpha_0n(n+1)\delta_{n+m,0} \] and \[ [L_n,L_m]=(n-m)L_{m+n}+\frac{c}{12}(n^3-n)\delta_{n+m,0} \]

  • thus the Virasoro algebra acts on \(F_{\alpha}\) with the central charge \(c=1-12\alpha_0^2=13-6(t+1/t)\)
  • we also have

\[ L_n|\alpha \rangle=0\, (n\in \mathbb{Z}_{> 0}) \] and \[ L_0|\alpha \rangle=h_{\alpha}|\alpha \rangle \] with \(h_{\alpha}=\frac{\alpha^2}{2}-\alpha_0\alpha\)

singular vectors in Fock space representations

def

An element \(|\chi \rangle\in F_{\alpha}\) is called the singular vectors of degree \(N\in \mathbb{Z}\) if \[ L_n|\chi \rangle=0\, (n\in \mathbb{Z}_{> 0}) \] and \[ L_0|\chi \rangle=(h_{\alpha}+N)|\chi \rangle \]

thm

If \(\alpha\notin \{\alpha_{r,s}:r,s\in \mathbb{Z}_{>0} \text{or } r,s\in \mathbb{Z}_{<0} \}\), \(F_{\alpha}\) is irreducible.

If \(\alpha=\alpha_{r,s}\) for some \(r,s\in \mathbb{Z}_{>0}\), there exists a unique singular vector \(|\chi_{r,s}\rangle \in F_{\alpha}\) of degree \(N=rs\) up to a constant factor.


examples

  • \(|\chi_{1,1}\rangle=a_{-1}|\alpha_{1,1}\rangle\)
  • \(|\chi_{1,2}\rangle=(a_{-2}+\sqrt{2t}a_{-1}^2)|\alpha_{1,2}\rangle\)
  • \(|\chi_{2,2}\rangle=(a_{-4}+\frac{4\sqrt{2t}}{1-t}a_{-3}a_{-1}-2\frac{1+t+t^2}{\sqrt{2t}(1-t)}a_{-2}^2-4a_{-2}a_{-1}^2-\frac{2\sqrt{2t}}{1-t}a_{-1}^4)|\alpha_{2,2}\rangle\)
  • if we use the substitutions \(a_{-n}\mapsto \sqrt{\frac{t}{2}}p_n,\, |\alpha_{r,s}\rangle\mapsto 1\), we get the Jack symmetric polynomials
thm [Mimachi-Yamada]

The Virasoro singular vector \(|\chi_{r,s}\rangle\) has one-to-one correspondence with the Jack symmetric polynomial \(J_{\{s^r\}}(x;t)\) with the rectangular diagram \(\{s^r\}\)

computational resource


articles

  • Schechtman, Vadim, and Alexander Varchenko. “Rational Differential Forms on Line and Singular Vectors in Verma Modules over \(\widehat {sl}_2\).” arXiv:1511.09014 [math-Ph], November 29, 2015. http://arxiv.org/abs/1511.09014.
  • Yanagida, Shintarou. “Singular Vectors of \(N=1\) Super Virasoro Algebra via Uglov Symmetric Functions.” arXiv:1508.06036 [math-Ph], August 25, 2015. http://arxiv.org/abs/1508.06036.
  • Kirillov, Anatol N. ‘Notes on Schubert, Grothendieck and Key Polynomials’. arXiv:1501.07337 [math], 28 January 2015. http://arxiv.org/abs/1501.07337.
  • Ridout, David, and Simon Wood. “From Jack Polynomials to Minimal Model Spectra.” arXiv:1409.4847 [hep-Th], September 16, 2014. http://arxiv.org/abs/1409.4847.
  • Millionschikov, Dmitry. “Singular Virasoro Vectors and Lie Algebra Cohomology.” arXiv:1405.6734 [math], May 26, 2014. http://arxiv.org/abs/1405.6734.
  • Tsuchiya, Akihiro, and Simon Wood. “On the Extended W-Algebra of Type sl_2 at Positive Rational Level.” International Mathematics Research Notices, June 19, 2014. doi:10.1093/imrn/rnu090.
  • Fuchs, Dmitry. “Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras.” Symmetry, Integrability and Geometry: Methods and Applications, August 27, 2008. doi:10.3842/SIGMA.2008.059.
  • Awata, H., Y. Matsuo, S. Odake, and J. Shiraishi. “A Note on Calogero-Sutherland Model, W_n Singular Vectors and Generalized Matrix Models.” arXiv:hep-th/9503028, March 6, 1995. http://arxiv.org/abs/hep-th/9503028.
  • Mimachi, Katsuhisa, and Yasuhiko Yamada. “Singular Vectors of the Virasoro Algebra in Terms of Jack Symmetric Polynomials.” Communications in Mathematical Physics 174, no. 2 (1995): 447–55.
  • Kent, A. “Singular Vectors of the Virasoro Algebra.” Physics Letters B 273, no. 1–2 (December 1991): 56–62. doi:10.1016/0370-2693(91)90553-3.
  • Feigin, B. L., and D. B. Fuchs. "8. Representations of the Virasoro algebra." Representation of Lie groups and related topics (1990): 465.
  • Malikov, F. G., B. L. Feigin, and D. B. Fuks. “Singular Vectors in Verma Modules over Kac—Moody Algebras.” Functional Analysis and Its Applications 20, no. 2 (April 1, 1986): 103–13. doi:10.1007/BF01077264.