"Q-states Potts model and Ashkin-Teller model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 3명의 중간 판 32개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction== | |
− | + | * The Potts model plays an essential role in classical statistical mechanics, illustrating many fundamental phenomena. One example is the existence of partially long-range-ordered states, in which some degrees of freedom remain disordered | |
* Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not. | * Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not. | ||
* 2-states Potts model = [[Ising models|Ising model]] M(3,4) minimal model | * 2-states Potts model = [[Ising models|Ising model]] M(3,4) minimal model | ||
− | * 3-states Potts model = | + | * [[3-states Potts model]] = M(5,6) [[minimal models|minimal model]] |
+ | * recent developments of superintegrable chiral Potts model | ||
+ | * types | ||
+ | ** self-dual potts model | ||
+ | ** chiral potts model | ||
− | + | ||
− | + | ||
− | + | ==two dimensional water== | |
* modeling freezing water | * modeling freezing water | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==related items== | |
* [[Cartan matrices E n]] | * [[Cartan matrices E n]] | ||
+ | * [[Temperley-Lieb algebra]] | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==encyclopedia== | |
* http://en.wikipedia.org/wiki/Potts_model | * http://en.wikipedia.org/wiki/Potts_model | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ||
− | |||
− | + | ==books== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | * [http://www.worldscibooks.com/physics/0983.html Potts model and related problems in statistical mechanics] | |
+ | ** P. Martin | ||
− | + | ||
− | + | ==expositions== | |
+ | * Au-Yang, Helen, and Jacques H. H. Perk. “About 30 Years of Integrable Chiral Potts Model, Quantum Groups at Roots of Unity and Cyclic Hypergeometric Functions.” arXiv:1601.01014 [math-Ph], January 5, 2016. http://arxiv.org/abs/1601.01014. | ||
+ | * Perk, Jacques H. H. “The Early History of the Integrable Chiral Potts Model and the Odd-Even Problem.” arXiv:1511.08526 [math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08526. | ||
− | * http://arxiv.org/ | + | ==articles== |
+ | * Au-Yang, Helen, and Jacques H. H. Perk. “CSOS Models Descending from Chiral Potts Models: Degeneracy of the Eigenspace and Loop Algebra.” arXiv:1511.08523 [cond-Mat, Physics:math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08523. | ||
+ | * Jacobsen, Jesper Lykke. “Critical Points of Potts and O(<math>N</math>) Models from Eigenvalue Identities in Periodic Temperley-Lieb Algebras.” arXiv:1507.03027 [cond-Mat, Physics:math-Ph], July 10, 2015. http://arxiv.org/abs/1507.03027. | ||
+ | * Lencses, M., and G. Takacs. “Confinement in the Q-State Potts Model: An RG-TCSA Study.” arXiv:1506.06477 [cond-Mat, Physics:hep-Th], June 22, 2015. http://arxiv.org/abs/1506.06477. | ||
+ | * Molkaraie, Mehdi, and Vicenc Gomez. ‘Efficient Monte Carlo Methods for the Potts Model at Low Temperature’. arXiv:1506.07044 [physics, Stat], 23 June 2015. http://arxiv.org/abs/1506.07044. | ||
+ | * Ikhlef, Yacine, and Robert Weston. ‘Discrete Holomorphicity in the Chiral Potts Model’. arXiv:1502.04944 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 17 February 2015. http://arxiv.org/abs/1502.04944. | ||
+ | * Dasu, Shival, and Matilde Marcolli. “Potts Models with Magnetic Field: Arithmetic, Geometry, and Computation.” arXiv:1412.7925 [math-Ph], December 26, 2014. http://arxiv.org/abs/1412.7925. | ||
+ | * Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424. | ||
+ | * [http://prola.aps.org/abstract/RMP/v54/i1/p235_1 The Potts model] | ||
+ | ** Fa-Yueh Wu, Rev. Mod. Phys. 54, 235 - 268 (1982) | ||
+ | * [http://dx.doi.org/10.1088/0305-4470/14/2/005 Critical exponents of two-dimensional Potts and bond percolation models] | ||
+ | ** H W J Blote , M P Nightingale and B Derrida, 1981 | ||
+ | * [http://dx.doi.org/10.1098/rspa.1979.0023 Some Exact Results for the Ashkin-Teller Model] | ||
+ | ** Temperley, H. N. V.; Ashley, Susan E, 1979 | ||
− | |||
− | + | [[분류:integrable systems]] | |
+ | [[분류:math and physics]] | ||
+ | [[분류:migrate]] | ||
− | + | ==메타데이터== | |
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7235385 Q7235385] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'potts'}, {'LEMMA': 'model'}] |
2021년 2월 17일 (수) 01:42 기준 최신판
introduction
- The Potts model plays an essential role in classical statistical mechanics, illustrating many fundamental phenomena. One example is the existence of partially long-range-ordered states, in which some degrees of freedom remain disordered
- Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not.
- 2-states Potts model = Ising model M(3,4) minimal model
- 3-states Potts model = M(5,6) minimal model
- recent developments of superintegrable chiral Potts model
- types
- self-dual potts model
- chiral potts model
two dimensional water
- modeling freezing water
encyclopedia
books
expositions
- Au-Yang, Helen, and Jacques H. H. Perk. “About 30 Years of Integrable Chiral Potts Model, Quantum Groups at Roots of Unity and Cyclic Hypergeometric Functions.” arXiv:1601.01014 [math-Ph], January 5, 2016. http://arxiv.org/abs/1601.01014.
- Perk, Jacques H. H. “The Early History of the Integrable Chiral Potts Model and the Odd-Even Problem.” arXiv:1511.08526 [math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08526.
articles
- Au-Yang, Helen, and Jacques H. H. Perk. “CSOS Models Descending from Chiral Potts Models: Degeneracy of the Eigenspace and Loop Algebra.” arXiv:1511.08523 [cond-Mat, Physics:math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08523.
- Jacobsen, Jesper Lykke. “Critical Points of Potts and O(\(N\)) Models from Eigenvalue Identities in Periodic Temperley-Lieb Algebras.” arXiv:1507.03027 [cond-Mat, Physics:math-Ph], July 10, 2015. http://arxiv.org/abs/1507.03027.
- Lencses, M., and G. Takacs. “Confinement in the Q-State Potts Model: An RG-TCSA Study.” arXiv:1506.06477 [cond-Mat, Physics:hep-Th], June 22, 2015. http://arxiv.org/abs/1506.06477.
- Molkaraie, Mehdi, and Vicenc Gomez. ‘Efficient Monte Carlo Methods for the Potts Model at Low Temperature’. arXiv:1506.07044 [physics, Stat], 23 June 2015. http://arxiv.org/abs/1506.07044.
- Ikhlef, Yacine, and Robert Weston. ‘Discrete Holomorphicity in the Chiral Potts Model’. arXiv:1502.04944 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 17 February 2015. http://arxiv.org/abs/1502.04944.
- Dasu, Shival, and Matilde Marcolli. “Potts Models with Magnetic Field: Arithmetic, Geometry, and Computation.” arXiv:1412.7925 [math-Ph], December 26, 2014. http://arxiv.org/abs/1412.7925.
- Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424.
- The Potts model
- Fa-Yueh Wu, Rev. Mod. Phys. 54, 235 - 268 (1982)
- Critical exponents of two-dimensional Potts and bond percolation models
- H W J Blote , M P Nightingale and B Derrida, 1981
- Some Exact Results for the Ashkin-Teller Model
- Temperley, H. N. V.; Ashley, Susan E, 1979
메타데이터
위키데이터
- ID : Q7235385
Spacy 패턴 목록
- [{'LOWER': 'potts'}, {'LEMMA': 'model'}]