"Surfaces with punctures"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
replace ideal triangulation by tagged triangulation
 
replace ideal triangulation by tagged triangulation
  
 
+
  
 
+
  
 
==notions==
 
==notions==
15번째 줄: 15번째 줄:
 
* radius
 
* radius
  
 
+
  
 
+
  
 
==tagged triangulation==
 
==tagged triangulation==
  
*  two tagged arcs are compatible if<br> (i) they do not cross<br> (ii) they are not isotopic except<br>
+
*  two tagged arcs are compatible if (i) they do not cross (ii) they are not isotopic except
*  tagged triangulation<br>
+
*  tagged triangulation
 
** maximal collection of compatible tagged arcs
 
** maximal collection of compatible tagged arcs
  
 
+
  
 
+
  
 
==tagged arc complex==
 
==tagged arc complex==
33번째 줄: 33번째 줄:
 
tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs
 
tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs
  
 
+
  
 
+
  
 
\Theorem (Fomin, Shapiro, Thurston)
 
\Theorem (Fomin, Shapiro, Thurston)
  
(S,M) any marked surface.  Then there exists a cluster algebra associated to it,
+
(S,M) any marked surface. Then there exists a cluster algebra associated to it,
  
 
tagged arc complex = cluster complex
 
tagged arc complex = cluster complex
  
tagged arcs,- <=> cluster variables 
+
tagged arcs,- <=> cluster variables
  
 
tagged flips <-> mutations
 
tagged flips <-> mutations
  
 
+
  
 
+
  
 
+
  
== ==
+
== ==
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]

2020년 12월 28일 (월) 04:15 기준 최신판

surface with punctures

replace ideal triangulation by tagged triangulation



notions

  • once-punctured monogon
  • once-punctured n-gon
  • self-folded
  • tagged arc
  • radius



tagged triangulation

  • two tagged arcs are compatible if (i) they do not cross (ii) they are not isotopic except
  • tagged triangulation
    • maximal collection of compatible tagged arcs



tagged arc complex

tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs



\Theorem (Fomin, Shapiro, Thurston)

(S,M) any marked surface. Then there exists a cluster algebra associated to it,

tagged arc complex = cluster complex

tagged arcs,- <=> cluster variables

tagged flips <-> mutations