"Ribbon category"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
6번째 줄: 6번째 줄:
 
* construction of isotopy invariants of knots, links, tangles, whose components are coloured with objects of a ribbon category
 
* construction of isotopy invariants of knots, links, tangles, whose components are coloured with objects of a ribbon category
  
 +
;defn
 +
A ribbon category is a rigid braided tensor category with functorial isomorphisms <math>\delta_V : V \simeq V^{**}</math> satisfying
 +
:<math>
 +
\begin{aligned}
 +
\delta_{V\otimes W} & = \delta_V\otimes \delta_W, \\
 +
\delta_{1} & = \operatorname{id}, \\
 +
\delta_{V^{*}} & = (\delta_V^{*})^{-1}
 +
\end{aligned}
 +
</math>
 +
where for <math>f\in \operatorname{Hom}(U,V)</math>, <math>f^*\in \operatorname{Hom}(V^*,U^*)</math>
  
 
==example==
 
==example==
 +
===category of finite-dimensional representations of the quantum group===
 
* Bakalov-Kirillov p.34
 
* Bakalov-Kirillov p.34
* let $\mathfrak{g}$ be a simple Lie algebra
+
* let <math>\mathfrak{g}</math> be a simple Lie algebra
* non-trivial example of a ribbon category is provided by the category of finite-dimensional representations of the quantum group $U_q(\mathfrak{g})$
+
* non-trivial example of a ribbon category is provided by the category of finite-dimensional representations of the quantum group <math>U_q(\mathfrak{g})</math>
* balancing $\delta_V = q^{2\rho} :V \simeq V^{**}$
+
* balancing <math>\delta_V = q^{2\rho} :V \simeq V^{**}</math>
* on a weight vector $v$ of weight $\lambda$, $q^{2\rho}$ acts as a multiplication by $q^{\langle \langle 2\rho, \lambda \rangle \rangle}$
+
* on a weight vector <math>v</math> of weight <math>\lambda</math>, <math>q^{2\rho}</math> acts as a multiplication by <math>q^{\langle \langle 2\rho, \lambda \rangle \rangle}</math>
* we see that $V^{**}\simeq V$ as a vector space, but has a different action of $U_q(\mathfrak{g})$, namely
+
* we see that <math>V^{**}\simeq V</math> as a vector space, but has a different action of <math>U_q(\mathfrak{g})</math>, namely
$$
+
:<math>
 
\pi_{V^{**}}(a) = \pi_{V}(\gamma^2(a))), \, a\in U_q(\mathfrak{g})
 
\pi_{V^{**}}(a) = \pi_{V}(\gamma^2(a))), \, a\in U_q(\mathfrak{g})
$$
+
</math>
* we have $\gamma^2(a) = q^{2\rho}a q^{-2\rho},\, a\in U_q(\mathfrak{g})$
+
* we have <math>\gamma^2(a) = q^{2\rho}a q^{-2\rho},\, a\in U_q(\mathfrak{g})</math>
 +
===Drinfeld category===
  
 
==related items==
 
==related items==
23번째 줄: 35번째 줄:
  
 
[[분류:quantum groups]]
 
[[분류:quantum groups]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q17102717 Q17102717]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'ribbon'}, {'LEMMA': 'category'}]
 +
* [{'LOWER': 'tortile'}, {'LEMMA': 'category'}]

2021년 2월 17일 (수) 01:40 기준 최신판

introduction

  • important class of braided monoidal categories
  • two additional structures
    • duality
    • twist
  • construction of isotopy invariants of knots, links, tangles, whose components are coloured with objects of a ribbon category
defn

A ribbon category is a rigid braided tensor category with functorial isomorphisms \(\delta_V : V \simeq V^{**}\) satisfying \[ \begin{aligned} \delta_{V\otimes W} & = \delta_V\otimes \delta_W, \\ \delta_{1} & = \operatorname{id}, \\ \delta_{V^{*}} & = (\delta_V^{*})^{-1} \end{aligned} \] where for \(f\in \operatorname{Hom}(U,V)\), \(f^*\in \operatorname{Hom}(V^*,U^*)\)

example

category of finite-dimensional representations of the quantum group

  • Bakalov-Kirillov p.34
  • let \(\mathfrak{g}\) be a simple Lie algebra
  • non-trivial example of a ribbon category is provided by the category of finite-dimensional representations of the quantum group \(U_q(\mathfrak{g})\)
  • balancing \(\delta_V = q^{2\rho} :V \simeq V^{**}\)
  • on a weight vector \(v\) of weight \(\lambda\), \(q^{2\rho}\) acts as a multiplication by \(q^{\langle \langle 2\rho, \lambda \rangle \rangle}\)
  • we see that \(V^{**}\simeq V\) as a vector space, but has a different action of \(U_q(\mathfrak{g})\), namely

\[ \pi_{V^{**}}(a) = \pi_{V}(\gamma^2(a))), \, a\in U_q(\mathfrak{g}) \]

  • we have \(\gamma^2(a) = q^{2\rho}a q^{-2\rho},\, a\in U_q(\mathfrak{g})\)

Drinfeld category

related items

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'ribbon'}, {'LEMMA': 'category'}]
  • [{'LOWER': 'tortile'}, {'LEMMA': 'category'}]