"Anomalous magnetic moment of electron"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 46개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
 
+
* The electron spin g-factor <math>g</math> is approximately two
* amplitude = sum of integrals = <math>\sum_{n\text{ loops}}</math> sum of integrals
+
* Dirac theory explains why <math>g=2</math>, but it's not exactly 2
* anomalous electron magnetic dipole moment 1.00115965219
+
* the currently accepted value is 2.00231930436153
 +
* this discrepancy is explained by QED
 
* theoretical computation matches 11 digits with experiments
 
* theoretical computation matches 11 digits with experiments
* as n grows, number of Feynman diagrams grows exponentially
+
* anomalous electron magnetic dipole moment <math>g/2=1.00115965219</math>
* integrals are becoming difficult
 
 
 
 
 
 
 
 
 
 
 
<h5>classical magnetic moment</h5>
 
 
 
*  A classical electron moving around a nucleus in a circular orbit<br>
 
** orbital angular momentum, L=m_evr
 
** magnetic dipole moment, \mu= -evr/2
 
** where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively.
 
*  A classical electron of homogeneous mass and charge density rotating about a symmetry axis<br>
 
** angular momentum, L=(3/5)m_eR^2\Omega
 
** magnetic dipole moment, \mu= -(3/10)eR^2\Omega, where R and \Omega are the electron´s classical radius and rotating frequency
 
* gyromagnetic ratio <math>\gamma = \mu/L=-e/2m_e</math>
 
 
 
 
 
 
 
 
 
 
 
<h5>anamalous electron magnetic dipole moment</h5>
 
 
 
* In Dirac’s theory a point like spin 1/2 object of electric charge q and mass m has a magnetic moment: <math>\mathbf{\mu}=q\mathbf{S}/m</math>
 
*  classical vs quantum<br>[/pages/3589069/attachments/4562673 2004329152457_150.gif]<br>
 
 
 
 
 
 
 
* The g factor sets the strength of an electron’s interaction with a magnetic field.
 
* In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
 
* In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
 
* The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
 
*  
 
* http://www.wolframalpha.com/input/?i=fine+structure+constant
 
* http://www.wolframalpha.com/input/?i=1/fine+structure+constant
 
 
 
 
 
 
 
* [http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/%7Ekass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/~kass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw]
 
* [http://universe-review.ca/R15-12-QFT.htm ]http://universe-review.ca/R15-12-QFT.htm<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>two-loop diagrams</h5>
 
 
 
*  7 two-loop diagrams<br>[/pages/3589069/attachments/4562669 2004329153354_150.gif]<br>[/pages/7141159/attachments/4562733 I15-62-g2c.jpg]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>three-loop diagrams</h5>
 
 
 
* 72 three-loop diagrams
 
* [/pages/3589069/attachments/4562671 200432915395_150.gif]
 
 
 
* Toichiro Kinoshita
 
 
 
 
 
 
 
<h5>four-loop diagrams</h5>
 
 
 
*  891 diagrams
 
 
 
* [http://www.centrofermi.it/docs/primaconferenza/laporta_conferenzafermi.pdf Numerical calculation of electron g-2 at 4 loops in QED] S. Laporta<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>five-loop Feynman diagrams</h5>
 
 
 
* There are 12,672
 
* [http://www.strings.ph.qmul.ac.uk/%7Ebigdraw/feynman/slide3.html http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html][http://eskesthai.blogspot.com/2010/12/muon.html ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">anaomalous muon magnetic dipole moment</h5>
 
 
 
*  anaomalous muon magnetic dipole moment is still unknown<br>
 
* http://eskesthai.blogspot.com/2010/12/muon.html<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>memo</h5>
 
 
 
* [http://aias.us/documents/uft/a18thpaper.pdf Calculation of the Anomalous Magnetic Moment of the Electron from the Evans-Unified Field Theory]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5>history</h5>
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
 
 
<h5>related items</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
 
* number of Feynman diagrams http://oeis.org/A005413
 
* http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
* Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1
 
 
 
 
 
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
  
 
+
===Lande's question===
 +
* Bohr magneton : natural unit of magnetic moment due the electron's motion in orbit
 +
:<math>\mu_0=e\hbar /2m_ec</math>
 +
where
 +
# <math>e</math> is the elementary charge,
 +
# <math>\hbar</math> is the reduced Planck constant,
 +
# <math>m_e</math> is the electron rest mass and
 +
# <math>c</math> is the speed of light.
 +
* spin magnetic dipole moment <math>\mu_s</math>
 +
* Q. <math>\mu_s=\mu_0</math> ? (Back and Lande 1925)
 +
* We define <math>g</math> to be the gyromagnetic ratio
 +
:<math>\mu_s=\frac{g\mu_0}{2}</math>
  
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
+
==history==
 +
* <math>g_c</math> be the g-factor for 'core'
 +
===background===
 +
the ratio of the intrinsic magnetic moment of an electron to its intrinsic or spin angular momentum is not equal to (but very nearly twice) that ratio for the magnetic moment and angular momentum arising from the orbital motion of the electron.
  
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
===Lande g-factor===
 +
Basically through the work of Lande it was known that <math>g_c=2</math> fitted the observed
 +
multiplets of alkalies and also earth alkalies quite well. This value clearly had to
 +
be considered anomalous, since the magnetic moment and angular momentum of the
 +
core were due to the orbital motions of the electrons inside the core, which inevitably
 +
would lead to <math>g_c=1</math>, as explained in section 2.1. This was a great difficulty for the
 +
core model at the time, which was generally referred to as the “magneto-mechanical
 +
anomaly”. Pauli pointed out that one could either say that the physical value of the
 +
core’s gyromagnetic factor is twice the normal value, or, alternatively, that it is ob-
 +
tained by adding 1 to the normal value.
  
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
  
 
+
===Pauli's insight===
 +
Note that this hypothesis replaces the atom’s core as carrier of angular momentum by the valence electron. This means that (17), (18), and (20) are still valid, except that the subscript c (for “core”) is now replaced by the subscript s (for “spin”, anticipating its later interpretation), so that we now have a coupling of the electron’s orbital angular momentum (subscript e) to its intrinsic angular momentum (subscript s). In (20), with <math>g_c</math> replaced by <math>g_s</math>, one needs to set <math>g_s=2</math> in order to fit the data.
  
 
+
==classical magnetic moment==
  
<h5>blogs</h5>
+
* read [[spin system and Pauli exclusion principle|spin system]] first
 +
* gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"
 +
:<math>\gamma = \mu/L=-e/2m_e</math>
 +
[/pages/7141159/attachments/4562863 I15-62-g20.jpg]
 +
* pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment]
  
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
  
 
+
===orbital===
 +
* Let <math>e</math>, <math>m_e</math>, <math>v</math>, and <math>r</math> be the electron's charge, mass, velocity, and radius, respectively.
 +
* A classical electron moving around a nucleus in a circular orbit
 +
** orbital angular momentum, <math>L=m_evr</math>
 +
** magnetic dipole moment, <math>\mu= -evr/2</math>
 +
* we get <math>\gamma=\mu/L=-e/2m_e</math>
  
 
+
===spin===
 +
* A classical electron of homogeneous mass and charge density rotating about a symmetry axis
 +
** spin angular momentum, <math>L=(3/5)m_eR^2\Omega</math>
 +
** magnetic dipole moment, <math>\mu= -(3/10)eR^2\Omega</math>, where <math>R</math> and <math>\Omega</math> are the electron's classical radius and rotating frequency
 +
* we get <math>\gamma = \mu/L=-e/2m_e</math>
  
<h5>experts on the field</h5>
 
  
* http://arxiv.org/
+
==Dirac theory==
 +
* if we use Dirac equation, we can get the electron spin g factor 2 "naturally"
 +
* http://lnu.se/polopoly_fs/1.96725!PresentationGfactor.pdf
 +
* http://www7b.biglobe.ne.jp/~kcy05t/diragfac.html
  
 
 
  
 
+
==anamalous electron magnetic dipole moment==
 +
===electron spin g-factor===
 +
* there are correction terms to the spin magnetic moment of the electron as shown by experiments
 +
* actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)
 +
:<math>\vec{\mu}_S \ = g \mu_0 \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}</math>
 +
* The g factor sets the strength of an electron’s interaction with a magnetic field
  
<h5>links</h5>
+
===QED===
 +
* In classical physics (left) magnetic lines of force (perp
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q771367 Q771367]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
 +
* [{'LOWER': 'anomalous'}, {'LOWER': 'magnetic'}, {'LOWER': 'dipole'}, {'LEMMA': 'moment'}]

2021년 2월 17일 (수) 02:39 기준 최신판

introduction

  • The electron spin g-factor \(g\) is approximately two
  • Dirac theory explains why \(g=2\), but it's not exactly 2
  • the currently accepted value is 2.00231930436153
  • this discrepancy is explained by QED
  • theoretical computation matches 11 digits with experiments
  • anomalous electron magnetic dipole moment \(g/2=1.00115965219\)


Lande's question

  • Bohr magneton : natural unit of magnetic moment due the electron's motion in orbit

\[\mu_0=e\hbar /2m_ec\] where

  1. \(e\) is the elementary charge,
  2. \(\hbar\) is the reduced Planck constant,
  3. \(m_e\) is the electron rest mass and
  4. \(c\) is the speed of light.
  • spin magnetic dipole moment \(\mu_s\)
  • Q. \(\mu_s=\mu_0\) ? (Back and Lande 1925)
  • We define \(g\) to be the gyromagnetic ratio

\[\mu_s=\frac{g\mu_0}{2}\]


history

  • \(g_c\) be the g-factor for 'core'

background

the ratio of the intrinsic magnetic moment of an electron to its intrinsic or spin angular momentum is not equal to (but very nearly twice) that ratio for the magnetic moment and angular momentum arising from the orbital motion of the electron.


Lande g-factor

Basically through the work of Lande it was known that \(g_c=2\) fitted the observed multiplets of alkalies and also earth alkalies quite well. This value clearly had to be considered anomalous, since the magnetic moment and angular momentum of the core were due to the orbital motions of the electrons inside the core, which inevitably would lead to \(g_c=1\), as explained in section 2.1. This was a great difficulty for the core model at the time, which was generally referred to as the “magneto-mechanical anomaly”. Pauli pointed out that one could either say that the physical value of the core’s gyromagnetic factor is twice the normal value, or, alternatively, that it is ob- tained by adding 1 to the normal value.


Pauli's insight

Note that this hypothesis replaces the atom’s core as carrier of angular momentum by the valence electron. This means that (17), (18), and (20) are still valid, except that the subscript c (for “core”) is now replaced by the subscript s (for “spin”, anticipating its later interpretation), so that we now have a coupling of the electron’s orbital angular momentum (subscript e) to its intrinsic angular momentum (subscript s). In (20), with \(g_c\) replaced by \(g_s\), one needs to set \(g_s=2\) in order to fit the data.

classical magnetic moment

  • read spin system first
  • gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"

\[\gamma = \mu/L=-e/2m_e\] [/pages/7141159/attachments/4562863 I15-62-g20.jpg]


orbital

  • Let \(e\), \(m_e\), \(v\), and \(r\) be the electron's charge, mass, velocity, and radius, respectively.
  • A classical electron moving around a nucleus in a circular orbit
    • orbital angular momentum, \(L=m_evr\)
    • magnetic dipole moment, \(\mu= -evr/2\)
  • we get \(\gamma=\mu/L=-e/2m_e\)

spin

  • A classical electron of homogeneous mass and charge density rotating about a symmetry axis
    • spin angular momentum, \(L=(3/5)m_eR^2\Omega\)
    • magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where \(R\) and \(\Omega\) are the electron's classical radius and rotating frequency
  • we get \(\gamma = \mu/L=-e/2m_e\)


Dirac theory


anamalous electron magnetic dipole moment

electron spin g-factor

  • there are correction terms to the spin magnetic moment of the electron as shown by experiments
  • actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)

\[\vec{\mu}_S \ = g \mu_0 \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}\]

  • The g factor sets the strength of an electron’s interaction with a magnetic field

QED

  • In classical physics (left) magnetic lines of force (perp

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'anomalous'}, {'LOWER': 'magnetic'}, {'LOWER': 'dipole'}, {'LEMMA': 'moment'}]