"Symplectic leaves"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/4350407">sympletic geometry</a>페이지로 이동하였습니다.)
imported>Pythagoras0
 
(사용자 2명의 중간 판 9개는 보이지 않습니다)
1번째 줄: 1번째 줄:
[[symplectic geometry|sympletic geometry]]
+
==introduction==
 +
*[[symplectic geometry]]
 +
* The symplectic leaves are equivalence relations <math>x \sim y</math> if and only if <math>x</math> can be connected to <math>y</math> be a piece-wise Hamiltonian path
 +
* Let <math>D</math> be a degenerate distribution
 +
* this means that for every point <math>x \in M</math>, <math>D_x</math> is a subset of <math>T_x M</math>
 +
* subset = subspace
 +
* distribution normally means that <math>D_x</math> is constant rank
 +
* and <math>D_x</math> is spanned by vector fields
 +
* which means that for every <math>x</math> there is vector fields <math>X_1,\ldots,X_r</math> locally defined around <math>x</math> such that <math>X_1(x),\ldots,X_r(x)</math> span <math>D_x</math>
 +
* and <math>X_1(y),\ldots,X_r(y)</math> lie in <math>D_y</math> for all <math>y</math> where they are defined
 +
* a foliation of <math>D</math> is an immersed manifold <math>A</math> of <math>M</math> with <math>TA = D</math>
 +
* Let <math>M^{dis}</math> be the manifold with underlying set <math>M</math> and the discrete topology
 +
* <math>M^{dis}</math> is an immersed manifold for <math>D = M \times 0</math>
 +
* <math>M = \R^2</math>
 +
* <math>D = \R^2 \times \R</math>
 +
* the foliation is the map <math>\bigcup_{\R} \R \rightarrow \R^2</math>
  
 
+
==related items==
 +
* [[Foliation dynamics]]
  
‹william›The symplectic leaves are equivalence relations <math>x \tilde y</math> if and only if <math>x</math> can be connected to <math>y</math> be a piece-wise Hamiltonian path
+
[[분류:개인노트]]
27/02/201123:12:31‹william›<math>x \sim y</math>27/02/201123:14:18‹william›Let <math>D</math> be a degenerate distribution27/02/201123:14:49‹william›this means that for every point <math>x \in M</math>, <math>D_x</math> is a subset of <math>T_x M</math>27/02/201123:14:58‹william›subset = subspace27/02/201123:15:18‹william›distribution normally means that <math>D_x</math> is constant rank27/02/201123:15:25‹william›and <math>D_x</math> is spanned by vector fields27/02/201123:15:58‹william›which means that for every <math>x</math> there is vector fields <math>X_1,\ldots,X_r</math> locally defined around <math>x</math> such that <math>X_1(x),\ldots,X_r(x)</math> span <math>D_x</math>27/02/201123:16:19‹william›and <math>X_1(y),\ldots,X_r(y)</math> lie in <math>D_y</math> for all <math>y</math> where they are defined27/02/201123:18:02‹william›a foliation of <math>D</math> is an immersed manifold <math>A</math> of <math>M</math> with <math>TA = D</math>27/02/201123:19:10‹william›Let <math>M^{dis}</math> be the manifold with underlying set <math>M</math> and the discrete topology27/02/201123:20:09‹william›<math>M^{dis}</math> is an immersed manifold for <math>D = M \times 0</math>27/02/201123:20:36‹william›<math>M = \R^2</math>27/02/201123:20:46‹william›<math>D = \R^2 \times \R</math>27/02/201123:24:17‹william›the foliation is the map <math>\bigcup_{\R} \R \arr \R^2</math>27/02/201123:24:25‹william›the foliation is the map <math>\bigcup_{\R} \R \rightarrow \R^2</math>
+
[[분류:physics]]
 
+
[[분류:math and physics]]
 
+
[[분류:classical mechanics]]
 
+
[[분류:migrate]]
 
 
 
 
 
 
<h5>3/6/2011</h5>
 
 
 
 
 
[http://www.mathim.com/ ]TeX enclosed in dollar signs: $ ... math ... $<br> To invite a friend, simply send them the URL in your address bar. Make sure you two are in the same chat room. Check the tabs.<br>
 
== A LaTeX web-based chat ==
 
 
 
* [http://www.mathim.com/wschlsunjan302011# wschlsunjan302011]
 
06/03/201122:37:11* '''chlee''' joins wschlsunjan30201106/03/201122:36:51* william joins wschlsunjan30201106/03/201122:39:37‹william›M : symplectic manfold of dimension <math>2n</math>06/03/201122:39:48‹william›<math>\omega</math> symplectic form06/03/201122:40:11‹william›Any function <math>H</math> can be regarded as a Hamiltonian, gives rise to a Hamiltonian vector field <math>X_H</math>06/03/201122:40:23‹william›Then we get the Hamiltonian system <math>x'(t) = X_H(x(t))</math>06/03/201122:40:54‹william›The key property is that the flows of <math>X_H</math> preserve the symplectic form06/03/201122:41:08* '''chlee''' quit (timeout)06/03/201122:41:16‹william›still there?06/03/201122:42:45‹william›A solution to the Hamiltonian equation is a integral curve <math>x(t)</math>06/03/201122:42:54‹william›which is supposed to be an equation of motion06/03/201122:43:18‹william›A flow is <math>\phi_t</math>06/03/201122:43:35‹william›Let's say that is <math>M</math> is compact06/03/201122:43:59‹william›A flow is a set of diffeomorphisms of <math>M</math> parameterized by <math>t</math>, get <math>\phi_t</math>06/03/201122:44:30‹william›if you pick a point <math>x \in M</math>, then the curve <math>\phi_t(x)</math> is an integral curve going through <math>x</math> at time <math>t=0</math>06/03/201122:44:42‹william›(<math>\phi_t</math> is a flow requires <math>\phi_0</math> to be the identity)06/03/201122:45:30‹william›Flows preserving the symplectic form means that <math>\phi_t^* \omega = \omega</math> for all <math>t</math>06/03/201122:45:42‹william›<math>M</math> has a volume form <math>\omega^n</math>06/03/201122:46:19‹william›Symplectic form preserving flows are volume preserving06/03/201122:47:42‹william›We also have a Poisson bracket <math>{,}</math>06/03/201122:47:48‹william›<math>\{,\}</math>06/03/201122:48:08‹william›<math>\{f,g\}</math>06/03/201122:48:24‹william›<math>\{f,g\} = \omega(X_f,X_g)</math>06/03/201122:48:41‹william›The other thing Hamiltonian flows preserve are first integrals06/03/201122:48:53‹william›first integrals are functions <math>f</math> such that <math>\{f,H\} = 0</math>06/03/201122:49:14‹william›If <math>x</math> is a Hamiltonian curve then <math>f(x(t))</math> is constant for all time <math>t</math>06/03/201122:49:25‹william›<math>\{H,H\} = 0</math>06/03/201122:49:36‹william›<math>H</math> itself is a first integral06/03/201122:49:42‹william›example <math>N</math> configuration space06/03/201122:49:51‹william›<math>\omega</math> canonical symp. form on <math>T^* N</math>06/03/201122:50:02‹william›<math>H</math> being the kinetic plus potential energy06/03/201122:51:02‹william›More generally, if <math>f_1,\ldots,f_k</math> are first integrals, then can think of <math>f</math> as a function <math>M \arr \R^k</math>06/03/201122:51:13‹william›<math>f : M \rightarrow \R^k</math>06/03/201122:51:31‹william›And the Hamiltonian curves stay within the level sets <math>f^{-1}(c)</math>06/03/201122:51:47‹william›An integrable system is a set of <math>f_1,\ldots,f_n</math>06/03/201122:51:58‹william›which are (1) first integrals06/03/201122:52:28‹william›(2) <math>\{f_i,f_j\} = 0</math>06/03/201122:52:51‹william›(3) <math>df_1 \wedge \cdots \wedge df_n</math> is non-zero06/03/201122:53:10‹william›(3) is equivalent to saying that <math>f : M \rightarrow \R^n</math> has a regular value06/03/201122:54:19‹william›<math>M</math> has dimension <math>2n</math>06/03/201122:54:58‹william›Let's say that I have <math>f_1,\ldots,f_k</math> such that <math>\{f_i,f_j\} = 0</math>06/03/201122:55:11‹william›Then <math>k \leq n</math>, proof:06/03/201122:55:18‹william›Look at <math>X_{f_i}</math>06/03/201122:55:32‹william›<math>\omega(X_{f_i},X_{f_j}) = 0</math>06/03/201122:56:16‹william›(also assume that <math>df_1 \wedge \cdots df_k \neq 0</math>06/03/201122:56:19‹william›)06/03/201122:56:44‹william›This is equivalent to saying that <math>X_{f_1},\ldots,X_{f_k}</math> are linearly independent at some point06/03/201122:57:18‹william›Thus there is a point <math>c</math> such that the span <math>V</math> of <math>X_{f_1}(c),\ldots,X_{f_k}(c)</math>06/03/201122:57:25‹william›satisfies <math>\omega_{V} = 0</math>06/03/201122:57:34‹william›<math>\omega|_V = 0</math>06/03/201122:57:42‹william›So <math>\dim V \leq n</math>06/03/201123:00:06‹william›Say <math>\omega = \sum dp^i \wedge dq^i</math>06/03/201123:01:08‹william›---06/03/201123:01:32‹william›since we get <math>n</math> functions, this is sometimes called a completely integrable system06/03/201123:01:48‹william›Suppose <math>M</math> Is compact06/03/201123:02:07* '''chlee''' quit (timeout)06/03/201123:02:31‹william›Let <math>c</math> be such that <math>df_1 \wedge \cdots \wedge df_k |_c \neq 0</math>06/03/201123:03:52‹william›(a generic value of the system)06/03/201123:03:59‹william›Theorem:06/03/201123:04:06‹william›There is an open set <math>U</math> of <math>M</math> around <math>c</math> such that06/03/201123:04:24‹william›<math>U</math> is symplectomorphic to <math>D \times \T^n</math>06/03/201123:04:37‹william›<math>U</math> is symplectomorphic to <math>D \times T^n</math>06/03/201123:04:56‹william›where <math>D</math> is a small disc in <math>\R^n</math> and <math>T</math> is the torus, ie. <math>S^1</math>06/03/201123:05:33‹william›the symplectic form on <math>U</math> translates to <math>\sum \psi_i \wedge \phi_i</math>06/03/201123:05:55‹william›where <math>\psi</math> is standard coords for <math>D</math>, <math>\phi</math> standard circular coords for <math>T^n</math>06/03/201123:06:12‹william›the function <math>f</math> depends only on <math>D</math>,06/03/201123:06:32‹william›ie. fibres <math>f^{-1}(y)</math> are the sets <math>\{t\} \times T^n</math>06/03/201123:07:22‹william›(also can assume that <math>f^{-1}(c) = \{0\} \times T^n</math>06/03/201123:07:24‹william›)06/03/201123:08:19‹william›sorry, <math>c</math> is actually a point of <math>\R^n</math> such that <math>df_1 \wedge \cdots \wedge df_n</math> is never zero on <math>f^{-1}(c)</math>06/03/201123:08:44‹william›if this happens <math>f^{-1}(c)</math> is called a generic fibre06/03/201123:12:17‹william›Finally, the equation <math>x'(t) = X_H(x(t))</math>06/03/201123:12:38‹william›simplifies to <math>x'(t) = c</math>, where I believe <math>c</math> depends only on <math>D</math>06/03/201123:14:17‹william›Why? <math>X_H</math> is a linear combination of the <math>X_{f_i}</math>'s06/03/201123:14:42‹william›The <math>X_{f_i}</math>'s are tangent to the fibres <math>f^{-1}(y)</math>06/03/201123:18:39‹william›The flows for <math>X_{f_i}</math> are used to construct coordinates for <math>f^{-1}(c)</math>06/03/201123:18:55‹william›which means that <math>X_H</math> being a linear combination of <math>X_{f_i}</math>'s06/03/201123:19:30‹william›we get that <math>x'(t) = X_H(x(t))</math> simplies to <math>x'(t) = v</math>, <math>v</math> some constant vector06/03/201123:21:28‹william›On <math>D \times T^n</math>, <math>X_{f_i}</math> looks like <math>(d,t) \mapsto (d,t,g(d) v)</math>06/03/201123:21:36‹william›<math>v</math> a fixed vector in <math>\R^n</math>06/03/201123:22:17‹william›<math>D \times T^n \rightarrow D \times T^n \times \R^{2n}</math>06/03/201123:23:17‹william›If you fix <math>d \in D</math>, then the restriction of <math>X_{f_i}</math> to <math>\{d\} \times T^n</math> looks like <math>(d,t) \mapsto (d,t,v)</math>06/03/201123:23:33‹william›<math>v \in \R^n</math>06/03/201123:23:50‹william›In fact, <math>v</math> is the coordinate vector cooresponding to coordinate <math>\phi_i</math>06/03/201123:27:54‹william›In the non-compact case, fibres are <math>\R^k \times T^{n-k}</math>06/03/201123:28:20‹william›<math>f^{-1}(c) \iso \R^k \times T^{n-k}</math>06/03/201123:30:07‹william›Liouville-Arnold integrability06/03/201123:30:18‹william›<math>\T^n</math> are called Liouville torii06/03/201123:30:37‹william›<math>\psi</math> and <math>\phi</math> are called action-angle coords06/03/201123:31:07‹william›[http://en.wikipedia.org/wiki/Action-angle_coordinates http://en.wikipedia.org/wiki/A...dinates]06/03/201123:47:44‹william›<math>x'(t) = X_H(x(t))</math>
 
* [http://www.mathim.com/wschlsunjan302011# chlee]
 
* [http://www.mathim.com/wschlsunjan302011# william]
 
[http://www.phpfreechat.net/ ]
 
{| style="margin: 0pt; padding: 0pt; border-collapse: collapse;"
 
|-
 
|
 
chlee
 
 
 
|
 
|
 
|}
 
You must be connected to send a message
 
{| width="100%"
 
|+ Multi-line input
 
|-
 
|
 
|  
 
| You may also input chat and equations here. "Enter" sends the message. "Ctrl+Enter" previews the message. "Shift+Enter" makes a line break.<br>
 
|}
 
 
 
== How to Use the Chat ==
 
 
 
Chat rooms are entirely bookmarkable. Type "/help" for help on in-chat commands. Note that you can be in a maximum of 3 channels at once. If you navigate away from the page, and click on a link taking you to a new room and you already have 3 channels open, you will automatically leave the oldest channel.
 
 
 
[http://www.physicsforums.com/ Physics Forums]
 
 
 
== How to Send Math ==
 
 
 
'''Math should be enclosed between dollar signs ($).''' The markup between the dollar signs is standard LaTeX math typesetting. Using the multi-line entry box (not yet implemented) is recommended especially for complex math formulas. Line breaks will not affect what is displayed.
 
 
 
Expressions are grouped together using curly brackets. See below for examples. Learn more by checking out any LaTeX math reference or [ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf the AMS LaTeX math guide.]
 
 
 
{|
 
|+ Examples
 
|-
 
| What to type
 
| What is displayed
 
|-
 
|
 
<pre>
 
Enclose math in dollar signs, like: $2+2=4$.
 
</pre>
 
 
 
| Enclose math in dollar signs, like: <math>2+2=4</math>.
 
|-
 
|
 
<pre>
 
Fractions are easy. $2+2=\frac{8}{2}$.
 
</pre>
 
 
 
| Fractions are easy. <math>2+2=\frac{8}{2}</math>.
 
|-
 
|
 
<pre>
 
Greek letters abound: $\alpha = \omega t$
 
</pre>
 
 
 
| Greek letters abound: <math>\alpha = \omega t</math>
 
|-
 
|
 
<pre>
 
The quadratic formula is: <br>
 
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$.
 
</pre>
 
 
 
| The quadratic formula is: <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>.
 
|-
 
|
 
<pre>
 
Subscript stuff like $t_0$, <br>
 
superscript/exponentiate like $x^2$
 
</pre>
 
 
 
| Subscript stuff like <math>t_0</math>, superscript/exponentiate like <math>x^2</math>
 
|-
 
|
 
<pre>
 
Take integrals: $\Delta x=\int_{t_0}^{t_1} v(t)dt$
 
</pre>
 
 
 
| Take integrals: <math>\Delta x=\int_{t_0}^{t_1} v(t)dt</math>
 
|-
 
|
 
<pre>
 
Or limits: $\lim_{x\to0} \frac 1 x = \infty$
 
</pre>
 
 
 
| Or limits: <math>\lim_{x\to0} \frac 1 x = \infty</math>
 
|-
 
|
 
<pre>
 
Summations go as: <br>
 
$e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$
 
</pre>
 
 
 
| Summations go as: <math>e^x=\sum_{n=0}^\infty\frac{x^n}{n!}</math>
 
|-
 
|
 
<pre>
 
Vectors: $\v{a}$, <br>
 
dot products: $\v{a}\cdot\hat{x}=a_x$,<br>
 
and cross products: $\v{x}\times\v{x}=\v{0}$
 
</pre>
 
 
 
| Vectors: <math>\v{a}</math>, dot products: <math>\v{a}\cdot\hat{x}=a_x</math>,and cross products: <math>\v{x}\times\v{x}=\v{0}</math>
 
|-
 
|
 
<pre>
 
Some people prefer vectors in bold: $\mathbf x$
 
</pre>
 
 
 
| Some people prefer vectors in bold: <math>\mathbf x</math>
 
|-
 
|
 
<pre>
 
Grad, div, curl:<br>
 
$\nabla Z$,<br>
 
$\nabla \cdot \v{E}=\frac \rho {\epsilon_0}$,<br>
 
$\nabla \times \v{E} <br>
 
    = - \frac {\partial{\vec B}} {\partial t}$.
 
</pre>
 
 
 
| Grad, div, curl:<math>\nabla Z</math>,<math>\nabla \cdot \v{E}=\frac \rho {\epsilon_0}</math>,<math>\nabla \times \v{E} = - \frac {\partial{\vec B}} {\partial t}</math>.
 
|-
 
|
 
<pre>
 
Matrices are a pain in the ass: <br>
 
$\begin{pmatrix} <br>
 
1 & 2 \\ <br>
 
3 & 4 <br>
 
\end{pmatrix}$<br>
 
But multiple lines make them manageable.
 
</pre>
 
 
 
| Matrices are a pain in the ass: <math>\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}</math>But multiple lines make them manageable.
 
|-
 
|
 
<pre>
 
If you want to talk about actual money, use two<br>
 
consecutive dollar signs and pay me $$20.
 
</pre>
 
 
 
| If you want to talk about actual money, use twoconsecutive dollar signs and pay me $20.
 
|-
 
|
 
<pre>
 
For more, read the AMS LaTeX math reference, linked above.
 
</pre>
 
 
 
| For more, read the AMS LaTeX math reference, linked above.
 
|}
 
 
 
== Input Required ==
 
 
 
Please enter your nickname
 
<br>
 

2020년 11월 13일 (금) 07:47 기준 최신판

introduction

  • symplectic geometry
  • The symplectic leaves are equivalence relations \(x \sim y\) if and only if \(x\) can be connected to \(y\) be a piece-wise Hamiltonian path
  • Let \(D\) be a degenerate distribution
  • this means that for every point \(x \in M\), \(D_x\) is a subset of \(T_x M\)
  • subset = subspace
  • distribution normally means that \(D_x\) is constant rank
  • and \(D_x\) is spanned by vector fields
  • which means that for every \(x\) there is vector fields \(X_1,\ldots,X_r\) locally defined around \(x\) such that \(X_1(x),\ldots,X_r(x)\) span \(D_x\)
  • and \(X_1(y),\ldots,X_r(y)\) lie in \(D_y\) for all \(y\) where they are defined
  • a foliation of \(D\) is an immersed manifold \(A\) of \(M\) with \(TA = D\)
  • Let \(M^{dis}\) be the manifold with underlying set \(M\) and the discrete topology
  • \(M^{dis}\) is an immersed manifold for \(D = M \times 0\)
  • \(M = \R^2\)
  • \(D = \R^2 \times \R\)
  • the foliation is the map \(\bigcup_{\R} \R \rightarrow \R^2\)

related items