"Symplectic leaves"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
[[symplectic geometry|symplectic geometry]]
+
==introduction==
 +
*[[symplectic geometry]]
 +
* The symplectic leaves are equivalence relations <math>x \sim y</math> if and only if <math>x</math> can be connected to <math>y</math> be a piece-wise Hamiltonian path
 +
* Let <math>D</math> be a degenerate distribution
 +
* this means that for every point <math>x \in M</math>, <math>D_x</math> is a subset of <math>T_x M</math>
 +
* subset = subspace
 +
* distribution normally means that <math>D_x</math> is constant rank
 +
* and <math>D_x</math> is spanned by vector fields
 +
* which means that for every <math>x</math> there is vector fields <math>X_1,\ldots,X_r</math> locally defined around <math>x</math> such that <math>X_1(x),\ldots,X_r(x)</math> span <math>D_x</math>
 +
* and <math>X_1(y),\ldots,X_r(y)</math> lie in <math>D_y</math> for all <math>y</math> where they are defined
 +
* a foliation of <math>D</math> is an immersed manifold <math>A</math> of <math>M</math> with <math>TA = D</math>
 +
* Let <math>M^{dis}</math> be the manifold with underlying set <math>M</math> and the discrete topology
 +
* <math>M^{dis}</math> is an immersed manifold for <math>D = M \times 0</math>
 +
* <math>M = \R^2</math>
 +
* <math>D = \R^2 \times \R</math>
 +
* the foliation is the map <math>\bigcup_{\R} \R \rightarrow \R^2</math>
 +
 
 +
==related items==
 +
* [[Foliation dynamics]]
  
‹william›The symplectic leaves are equivalence relations <math>x \tilde y</math> if and only if <math>x</math> can be connected to <math>y</math> be a piece-wise Hamiltonian path
 
27/02/201123:12:31‹william›<math>x \sim y</math>27/02/201123:14:18‹william›Let <math>D</math> be a degenerate distribution27/02/201123:14:49‹william›this means that for every point <math>x \in M</math>, <math>D_x</math> is a subset of <math>T_x M</math>27/02/201123:14:58‹william›subset = subspace27/02/201123:15:18‹william›distribution normally means that <math>D_x</math> is constant rank27/02/201123:15:25‹william›and <math>D_x</math> is spanned by vector fields27/02/201123:15:58‹william›which means that for every <math>x</math> there is vector fields <math>X_1,\ldots,X_r</math> locally defined around <math>x</math> such that <math>X_1(x),\ldots,X_r(x)</math> span <math>D_x</math>27/02/201123:16:19‹william›and <math>X_1(y),\ldots,X_r(y)</math> lie in <math>D_y</math> for all <math>y</math> where they are defined27/02/201123:18:02‹william›a foliation of <math>D</math> is an immersed manifold <math>A</math> of <math>M</math> with <math>TA = D</math>27/02/201123:19:10‹william›Let <math>M^{dis}</math> be the manifold with underlying set <math>M</math> and the discrete topology27/02/201123:20:09‹william›<math>M^{dis}</math> is an immersed manifold for <math>D = M \times 0</math>27/02/201123:20:36‹william›<math>M = \R^2</math>27/02/201123:20:46‹william›<math>D = \R^2 \times \R</math>27/02/201123:24:17‹william›the foliation is the map <math>\bigcup_{\R} \R \arr \R^2</math>27/02/201123:24:25‹william›the foliation is the map <math>\bigcup_{\R} \R \rightarrow \R^2</math>
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:physics]]
 
[[분류:physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:classical mechanics]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 07:47 기준 최신판

introduction

  • symplectic geometry
  • The symplectic leaves are equivalence relations \(x \sim y\) if and only if \(x\) can be connected to \(y\) be a piece-wise Hamiltonian path
  • Let \(D\) be a degenerate distribution
  • this means that for every point \(x \in M\), \(D_x\) is a subset of \(T_x M\)
  • subset = subspace
  • distribution normally means that \(D_x\) is constant rank
  • and \(D_x\) is spanned by vector fields
  • which means that for every \(x\) there is vector fields \(X_1,\ldots,X_r\) locally defined around \(x\) such that \(X_1(x),\ldots,X_r(x)\) span \(D_x\)
  • and \(X_1(y),\ldots,X_r(y)\) lie in \(D_y\) for all \(y\) where they are defined
  • a foliation of \(D\) is an immersed manifold \(A\) of \(M\) with \(TA = D\)
  • Let \(M^{dis}\) be the manifold with underlying set \(M\) and the discrete topology
  • \(M^{dis}\) is an immersed manifold for \(D = M \times 0\)
  • \(M = \R^2\)
  • \(D = \R^2 \times \R\)
  • the foliation is the map \(\bigcup_{\R} \R \rightarrow \R^2\)

related items