"Ribbon category"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
36번째 줄: | 36번째 줄: | ||
[[분류:quantum groups]] | [[분류:quantum groups]] | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q17102717 Q17102717] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'ribbon'}, {'LEMMA': 'category'}] | ||
+ | * [{'LOWER': 'tortile'}, {'LEMMA': 'category'}] |
2021년 2월 17일 (수) 01:40 기준 최신판
introduction
- important class of braided monoidal categories
- two additional structures
- duality
- twist
- construction of isotopy invariants of knots, links, tangles, whose components are coloured with objects of a ribbon category
- defn
A ribbon category is a rigid braided tensor category with functorial isomorphisms \(\delta_V : V \simeq V^{**}\) satisfying \[ \begin{aligned} \delta_{V\otimes W} & = \delta_V\otimes \delta_W, \\ \delta_{1} & = \operatorname{id}, \\ \delta_{V^{*}} & = (\delta_V^{*})^{-1} \end{aligned} \] where for \(f\in \operatorname{Hom}(U,V)\), \(f^*\in \operatorname{Hom}(V^*,U^*)\)
example
category of finite-dimensional representations of the quantum group
- Bakalov-Kirillov p.34
- let \(\mathfrak{g}\) be a simple Lie algebra
- non-trivial example of a ribbon category is provided by the category of finite-dimensional representations of the quantum group \(U_q(\mathfrak{g})\)
- balancing \(\delta_V = q^{2\rho} :V \simeq V^{**}\)
- on a weight vector \(v\) of weight \(\lambda\), \(q^{2\rho}\) acts as a multiplication by \(q^{\langle \langle 2\rho, \lambda \rangle \rangle}\)
- we see that \(V^{**}\simeq V\) as a vector space, but has a different action of \(U_q(\mathfrak{g})\), namely
\[ \pi_{V^{**}}(a) = \pi_{V}(\gamma^2(a))), \, a\in U_q(\mathfrak{g}) \]
- we have \(\gamma^2(a) = q^{2\rho}a q^{-2\rho},\, a\in U_q(\mathfrak{g})\)
Drinfeld category
메타데이터
위키데이터
- ID : Q17102717
Spacy 패턴 목록
- [{'LOWER': 'ribbon'}, {'LEMMA': 'category'}]
- [{'LOWER': 'tortile'}, {'LEMMA': 'category'}]